Journal of the Korea Institute of Military Science and Technology
Latest Publications


TOTAL DOCUMENTS

132
(FIVE YEARS 132)

H-INDEX

0
(FIVE YEARS 0)

Published By The Korea Institute Of Military Science And Technology

2636-0640

Author(s):  
Minwoo Yi ◽  
Sungjun Yoo ◽  
Youngseok Bae ◽  
Sunghoon Jang ◽  
Joonhyung Ryoo ◽  
...  

In this paper, a photonic-based microwave system technology is described, and a traveling-wave electro-optic modulator is designed and manufactured as a key component. The fabricated modulator is composed of a metal diffusion waveguide for optical transmission and a planar waveguide electrode on lithium niobate substrate for microwave transmission. The electro-optic response bandwidth of I and Q channels in a fabricated dual parallel Mach-Zehnder modulator were measured for 27.67 and 28.11 GHz, respectively. Photonic four times up-converted X-band frequency and linear frequency modulated signal were confirmed using the fabricated electro-optic modulator by S-band input signal. The confirmed broadband signal can be applied to a microwave system for surveillance and high-resolution ISAR imaging.


Author(s):  
Jaeeon Kwon ◽  
Dongwon Shin ◽  
Jangwook Hur

Radar is a ground defense system that detects enemy aircraft and receives power from a mobile power supply in an emergency. Serious problems may occur if the equipment is damaged by impact during transportation for use. The US military standard MIL-STD-810H contains information on environmental tests such as shock and vibration applied to munitions. Therefore, in this study, the transient analysis of ANSYS 19.2 was performed using the impact data specified in MIL-STD-810H as an input value. Through this, the maximum stress generated in the impact environment of the mobile power supply container was derived, and the safety margin was calculated to confirm the reliability of the container.


Author(s):  
Myunghwan Park ◽  
Jihyun Oh ◽  
Cheonyoung Kim ◽  
Hyeonju Seol

Air force air-to-air combat tactics are occurring at a high speed in three-dimensional space. The specification of the tactics requires dealing with a quite amount of information, which makes it a challenge to accurately describe the maneuvering procedure of the tactics. The specification of air-to-air tactics using natural languages is not suitable because of the intrinsic ambiguity of natural languages. Therefore, this paper proposes an approach of using UML Sequence Diagram to describe air-to-air combat tactics. Since the current Sequence Diagram notation is not sufficient to express all aspects of the tactics, we extend the syntax of the Sequence Diagram to accommodate the required features of air-to-air combat tactics. We evaluate the applicability of the extended Sequence Diagram to air-to-air combat tactics using a case example, that is the manned-unmanned teaming combat tactic. The result shows that Sequence Diagram specification is more advantageous than natural language specification in terms of readability, conciseness, and accuracy. However, the expressiveness of the Sequence Diagram is evaluated to be less powerful than natural language, requiring further study to address this issue.


Author(s):  
Taewoo Kim ◽  
Kangin Lee ◽  
Minwan Jeong ◽  
Yeji Jeong ◽  
KwangUoong Koh ◽  
...  

For the stabilization of laser output power and wavelength of the high power fiber laser, the cooling plate must be properly taken into account. In this study, three analyzing methods which are heat transfer theory, CFD and experiment are used to analyze cooling plate performance by measuring pump Laser Diode(LD) temperature. Under limited operating conditions of a cooling plate, the internal flow of cooling plate is transitional flow so that the internal flow is assumed to be laminar and turbulence flow and conducted theoretical calculation. Through CFD, temperature of pump LD and characteristics of the internal flow were analyzed. By the experiment, temperature of pump LD was measured in real conditions and the performance of the cooling plate was verified. The results of this study indicate that three analyzing methods are practically useful to design the cooling plate for the high power fiber laser or similar things.


Author(s):  
Cheonjoong Kim ◽  
Kyungah Lim ◽  
Seonah Kim

In this paper, we theoretically analyzed the self-alignment/navigation performance in the accelerometer resonance state generated by dither motion of ring laser gyroscope in LINS and verified it through simulation. As a result of analysis, it is confirmed that the amplitude of the accelerometer measurement amplified in the accelerometer resonance state is decreased in the process of sampling per the navigation calculation period and that frequency is changed by the aliasing effect too. It was also analysed that the attitude error in self-alignment is determined by the amplitude/frequency of the accelerometer measurement, the gain of the self-alignment loop, and the velocity and position error in the navigation is determined by the amplitude/frequency/phase error of the accelerometer measurement. This analysis and simulation results show that the self-alignment and navigation performance is not be degraded only when the amplification factor of the accelerometer measurement in the accelerometer resonance state is 3 or less


Author(s):  
Jegyung Son

Aircraft radar has special function which is ranging from aircraft to ground of antenna boresight. Because ranging information is used to calibrate altitude of aircraft or to drop a conventional bomb, the measuring have to be precise and robust. Therefore, we propose a simple and efficient method using monopulse radar for ground ranging. Proposed method calculates balancing weight according to linearity of monopulse ratio and mixes two ranging measurements in proportional to the weight. By exploiting balancing weight, radar is able to react to various environment as monopulse ratio contains characteristics of clutter environment. As a result, robust ranging information can be achieved. We use DEM(Digital Elevation Model) in order to simulate heterogeneous environment. In experimental result, it is shown that proposed method shows better accuracy and precision in any environment.


Author(s):  
JinBeom Shin ◽  
KilSeok Cho ◽  
DongGwan Lee ◽  
TaeHyon Kim

In this paper, we proposed a protocol to convert 2W telephone analog signals to Ethernet data in a private PSTN 2W tactical voice system. There are several kinds of operational problems in the tactical telephone network where 2W telephone copper lines are installed hundreds of meters away from the PBX in a headquarter site. The reason is that it is difficult to install and maintain the 2W telephone copper cable in severe operational fields and to meet safety and stability operational requirements of the telephone line under lighting and electromagnetic environments. In order to solve these challenging demands, we proposed an efficient method that the 2W analog interface signals between a private PBX system and a 2W telephone is converted to Ethernet messages using the optical Ethernet data communication network already deployed in the tactical weapon system. Thus, it is not necessary to install an additional optic cable for the ethernet telephone line and to maintain the private PSTN 2W telephone network. Also it provides safe and secure telecommunication operation under lightning and electromagnetic environments. This paper presents the conversion protocol from 2W telephone signals over Ethernet interface between PBX systems and 2W telephones, the mutual exchange protocol of ethernet messages between two converters, and the rule to process analog signal interface. Finally, we demonstrate that the proposed technique can provide a feasible solution in the tactical weapon system by analyzing its performance and experimental results such as the bandwidth of 2W telephone ethernet network and the transmission latency of voice signal, and the stability of optic ethernet voice network along with the ethernet data network.


Author(s):  
Juyeong Nam ◽  
Injoong Chang ◽  
Kyungsu Park ◽  
Hyung Hee Cho

Infrared guided weapons act as threats that greatly degrade the survivability of combat aircraft. Infrared weapons detect and track the target aircraft by sensing the infrared signature radiated from the aircraft fuselage. Therefore, in this study, we analyzed the infrared signature and susceptibility of supersonic aircraft according to omni-directional detection angle. Through the numerical analysis, we derived the surface temperature distribution of fuselage and omni-directional infrared signature. Then, we calculated the detection range according to detection angle in consideration of IR sensor’s parameters. Using in-house code, the lethal range was calculated by considering the relative velocity between aircraft and IR missile. As a result, the elevational susceptibility is larger than the azimuthal susceptibility, and it means that the aircraft can be attacked in wider area at the elevational situation.


Author(s):  
Hoseong Kim ◽  
Jaeguk Hyun ◽  
Hyunjung Yoo ◽  
Chunho Kim ◽  
Hyunho Jeon

Recently, infrared object detection(IOD) has been extensively studied due to the rapid growth of deep neural networks(DNN). Adversarial attacks using imperceptible perturbation can dramatically deteriorate the performance of DNN. However, most adversarial attack works are focused on visible image recognition(VIR), and there are few methods for IOD. We propose deep learning-based adversarial attacks for IOD by expanding several state-of-the-art adversarial attacks for VIR. We effectively validate our claim through comprehensive experiments on two challenging IOD datasets, including FLIR and MSOD.


Author(s):  
JongHyup Lee ◽  
Sungjin Kang ◽  
Wooyoung Noh ◽  
Jimyung Oh

In this paper, DFT-Based channel estimation with channel response mirroring is proposed and analyzed. In General, pilot symbols for channel estimation in MIMO(Multi-Input Multi-Output) OFDM(Orthogonal Frequency-Division Multiplexing) Systems have a diamond shape in the time-frequency plane. An interpolation technique to estimate the channel response of sub-carriers between reference symbols is needed. Various interpolation techniques such as linear interpolation, low-pass filtering interpolation, cubic interpolation and DFT interpolation are employed to estimate the non-pilot sub-carriers. In this paper, we investigate the conventional DFT-based channel estimation for noise reduction and channel response interpolation. The conventional method has performance degradation by distortion called “edge effect” or “border effect”. In order to mitigate the distortion, we propose an improved DFT-based channel estimation with channel response mirroring. This technique can efficiently mitigate the distortion caused by the DFT of channel response discontinuity. Simulation results show that the proposed method has better performance than the conventional DFT-based channel estimation in terms of MSE.


Sign in / Sign up

Export Citation Format

Share Document