Single-mode fiber optic cable for space applications

1992 ◽  
Author(s):  
Vasilios E. Kalomiris ◽  
Peter A. Michaels, Jr. ◽  
Anne E. Miller ◽  
Man F. Yan
2020 ◽  
Vol 49 (4) ◽  
pp. 485-493
Author(s):  
Samson Dauda Yusuf ◽  
Adedoyin Olawale George ◽  
Ibrahim Umar ◽  
Zubairu Abdulmumini Loko ◽  
Williams Lucas Lumbi

Author(s):  
Preetam Suman ◽  
Pallavi Gupta ◽  
Philip B. Kassey ◽  
Neera Saxena ◽  
Yogesh Choudhary ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zizheng Yue ◽  
Wenlin Feng

Abstract In this work, a fiber-optic fluoride-ion-detection Michelson interferometer based on the thin-core fiber (TCF) and no-core fiber (NCF) coated with α-Fe2O3/ZrO2 sensing film is proposed and presented. The single-mode fiber (SMF) is spliced with the TCF and NCF in turn, and a waist-enlarged taper is spliced between them. Then, a silver film is plated on the end face of NCF to enhance the reflection. After the absorption of fluoride ion by the sensing film, the effective refractive index (RI) of the coated cladding will change, which leads to the regular red shift of the interference dip with the increasing fluoride-ion concentration. Thus, the fluoride-ion concentrations can be determined according to the corresponding dip wavelength shifts. The results show that the sensor has an excellent linear response (R 2 = 0.995) with good sensitivity (8.970 nm/ppm) when the fluoride-ion concentration is in the range of 0–1.5 ppm. The response time is about 15 s. The sensor has the advantage of good selectivity, good temperature and pH stabilities, and can be applied to detect fluoride ion effectively.


1998 ◽  
Author(s):  
Ning Zhu ◽  
Peter DeDobbelaere ◽  
Anthony J. Ticknor ◽  
John I. Thackara ◽  
Janelle M. Freeman ◽  
...  

2021 ◽  
Vol 3 (1) ◽  
pp. 45-56
Author(s):  
Imam Mulyanto

The analysis of fiber optics for macro bending-based slope sensors using SMF-28 single-mode optical fibers has been successfully conducted. Fiber optics were treated to silicon rubber molding and connected with laser light and power meters to measure the intensity of laser power generated. The working principle was carried out using the macrobending phenomenon on single-mode optical fibers. The intensity of laser light in fiber optic cables decreases in the event of indentation or bending of the fiber optic cable. Power losses resulting from the macrobending process can be seen in the result of the information sensitivity of fiber optics to the change of angle given. From the results of the study, the resulting fiber optic sensitivity value is -0.1534o/dBm. The larger the angle given, the lower the laser intensity received by the power meter.


2019 ◽  
Vol 9 (2) ◽  
pp. 11-15
Author(s):  
Sisca Arisya Harry Andhina

Macrobending often occurs in optical fibers that embedded in the ground due to shifting of soil or rocks in the ground causing interference in transmission. In this study used single-mode-multimode-singlemode fiber optic cable connected manually and axially measured using a light source test equipment and optical power meter and the results will be compared. The measurement results obtained the greater  value of macrobending losses with the smaller the diameter of the winding, and the greater the number of turns. The highest value of macrobending losses in multimode cables is -1.48dB at 0.5cm diameter with 5 turns, highest value of macrobending losses on single mode cables is -12.73dB at 0.5cm diameter with 5 turns,  lowest value of macrobending losses for multimode cables is -0.44dB at 5cm diameter with 1 twist, lowest macrobending losses in singlemode cables is -1.69dB at 5cm diameter with 1 twist. While the value of macrobending losses on axially connected SMS cables shows the highest value of macrobending losses on multimode cables is -1.12dB in diameter of 0.5cm with 5 turns,  highest value of macrobending losses on singlemode cables is -1.18dB at diameter of 0.5cm with 5 turns,  lowest value for macrobending losses on multimode cables is -0.66dB at 5cm in diameter with 1 twist, the smallest value for macrobending losses on singlemode cables is -0.27dB at 5cm diameter with 1 twist . The measurement results also showed that the macrobending losses of manually connected SMS cables were greater than the macrobending losses of axially connected SMS cables.


2016 ◽  
Vol 45 (1) ◽  
pp. 0122001
Author(s):  
谢良平 Xie Liangping ◽  
李 瑞 Li Rui ◽  
张 斌 Zhang Bin ◽  
王京献 Wang Jingxian ◽  
张春熹 Zhang Chunxi

Sign in / Sign up

Export Citation Format

Share Document