Control theory of physical simulation on waterflooding in fractured reservoir: the similarity criteria

2013 ◽  
Author(s):  
Zupeng Ding ◽  
Yuetian Liu
Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Nie Bin ◽  
Gu Shaohua ◽  
Zeng Sijia

A mathematical equation of water drive physical simulation of pressure-sensitive fractured reservoirs was established based on previous research results. In this study, the similarity criteria of water drive physical simulation of pressure-sensitive fractured reservoirs were derived according to the similarity theory. First of all, based on the three-dimensional differential equation of rock mechanics, a dimensionless analysis was conducted to determine the similarity relationship between the displacement of oil by water of pressure-sensitive fractured reservoirs, the similarity criterion was obtained, and the similarity criteria were formed. Secondly, according to the similarity criterion, the similar relationship between the stress-strain fields of the real object and the simulated object was worked out. Thirdly, the finite element software COMSOL Multiphysics was applied to model and calculate the multifield coupling process in the percolation of pressure-sensitive fractured reservoirs, verifying the correctness of the established similarity criteria and similarity relationship. The verifying results shows that the similarity between the physical model and the actual model can be realized by magnifying the geometric size N times in a certain direction and adjusting the load and boundary conditions according to the similarity principle, which can be used for the design of the pressure-sensitive fractured reservoir simulation model for a physical indoor test.


2018 ◽  
Vol 5 (2) ◽  
pp. 167-178 ◽  
Author(s):  
Bo Zhao ◽  
Guangcai Wen ◽  
Haitao Sun ◽  
Dongling Sun ◽  
Huiming Yang ◽  
...  

2018 ◽  
Vol 196 ◽  
pp. 03008 ◽  
Author(s):  
Peter Dolzhikov ◽  
Albert Prokopov ◽  
Marina Prokopova ◽  
Natalya Hamidullina

The article presents the results of physical simulation of the formation of a dip over the mine workings. For this purpose, similarity criteria are substantiated and an experimental stand is developed. On samples of quaternary loam and clay it is proved that the velocity of the motion of the dip depends nonlinearly on the moisture content and exponentially damps in time.


2017 ◽  
Vol 102 (10) ◽  
pp. 1462-1470 ◽  
Author(s):  
Stephen H. Courtright ◽  
Brian W. McCormick ◽  
Sal Mistry ◽  
Jiexin Wang

Sign in / Sign up

Export Citation Format

Share Document