experimental stand
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 127)

H-INDEX

8
(FIVE YEARS 2)

Author(s):  
Роман Андреевич Иванов ◽  
Никита Владимирович Максаков

Актуальность разработки обусловлена необходимостью создания устройства для сбора и обработки информации с экспериментального стенда солнечных панелей. Назначением стенда является получение достоверных данных для верификации моделей оценки показателей гелиопотенциала, использующихся при обосновании эффективности применения солнечных электростанций на территории восточных регионов России. Дано описание основного и вспомогательного оборудования экспериментального стенда. Солнечные панели стенда разноориентированы для определения наиболее эффективного угля наклона и обоснования необходимости применения следящей за солнцем системы. Для снятия и записи мгновенной мощности солнечных панелей разработано устройство на основе микроконтроллера Arduino. Для мониторинга показаний силы тока используется шунтовый амперметр, подключаемый в разрыв цепи питания. Приведена схема счётчика тока и описана его работа. Приведены первичные результаты собранных данных. Намечены основные этапы дальнейшей обработки данных. The relevance of the presented development is due to the need to create a device to read and process information from an experimental array of solar panels. The purpose of the array is to obtain reliable data for the verification of models for estimating photovoltaic power potential indicators used in justifying the feasibility of the adoption of solar power plants in the eastern regions of Russia. We present a description of the main and auxiliary equipment of the experimental array. The array's solar panels are arranged in different ways so as to determine the most efficient tilt angle and justify the need to use a sun tracking system. The proprietary device based on the Arduino microcontroller was designed to read and write the value of instantaneous power of solar panels. To monitor the readings of the amperage, a shunt ammeter is used, which is connected to the gap of the power circuit. The study provides a diagram of the current meter and describe its operation. We outlined the main stages of subsequent data processing.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 339
Author(s):  
Tom Kusznir ◽  
Jaroslaw Smoczek

This paper proposes a multi-gene genetic programming (MGGP) approach to identifying the dynamic prediction model for an overhead crane. The proposed method does not rely on expert knowledge of the system and therefore does not require a compromise between accuracy and complex, time-consuming modeling of nonlinear dynamics. MGGP is a multi-objective optimization problem, and both the mean square error (MSE) over the entire prediction horizon as well as the function complexity are minimized. In order to minimize the MSE an initial estimate of the gene weights is obtained by using the least squares approach, after which the Levenberg–Marquardt algorithm is used to find the local optimum for a k-step ahead predictor. The method was tested on both a simulation model obtained from the Euler–Lagrange equation with friction and the experimental stand. The simulation and the experimental stand were trained with varying control inputs, rope lengths and payload masses. The resulting predictor model was then validated on a testing set, and the results show the effectiveness of the proposed method.


2022 ◽  
Vol 52 (1) ◽  
pp. 83-86
Author(s):  
I N Zavestovskaya ◽  
V A Gushchin ◽  
L I Russu ◽  
E A Cheshev ◽  
A L Koromyslov ◽  
...  

Abstract We report the results of the development of an experimental stand based on UVA light-emitting diodes (UVA LEDs) with radiation wavelengths of 385 and 395 nm for studying experimentally the inactivation of viruses of the coronavirus family, including SARS-CoV-2. Methodological grounds are presented for determining the inactivation dose that provides a predetermined decrease in the virus titre under the impact of UVA radiation. The effect of the diode radiation divergence on the virus photoinactivation process is investigated. It is shown that UVA LEDs can be used to reduce the virus titre by 4 orders of magnitude.


2022 ◽  
Vol 92 (2) ◽  
pp. 250
Author(s):  
Д.Н. Диев ◽  
И.А. Ковалев ◽  
М.Н. Макаренко ◽  
А.В. Наумов ◽  
А.В. Поляков ◽  
...  

The paper describes a high-temperature superconducting magnetic system (HTS SMS) to equip an experimental stand intended for neuron activity researches under constant and low-frequency magnetic fields up to 1 T. The design of the magnetic system together with its electromagnetic and cryogenic parameters is briefly discussed. The test results of the preliminary experiments conducted in liquid nitrogen at 77 K for two interchangeable magnets are given. The first magnet was manufactured in the form of a double pancake coil wound with 4 mm high HTS tape. The second magnet was made of pure copper wire with no frame and was impregnated with a thermally conducting epoxy resin. The advantages of the HTS pancake coil were demonstrated in comparison with the cryo-resistive solenoid. Low energy consumption of the HTS magnetic system will allow conducting continuous non-invasive monitoring of biological objects in a magnetic field.


Author(s):  
Doru Bogdan Stoica ◽  
Cristian Nicolae Eparu ◽  
Adrian Neacsa ◽  
Alina Petronela Prundurel ◽  
Bogdan Nicolae Simescu

AbstractAs air pollution has become a major issue in nowadays world, reducing methane emissions from the natural gas transmission systems is an issue that definitely has to be addressed. In order to do that, there are a few solutions available, such as the replacement of steel pipes with high-density polyethylene (HDPE) pipes. The main causes of these leaks are the corrosion defects and third-party interventions. The paper presents a new methodology for technological gas loss calculation from the natural gas transmission system. In order to obtain the most accurate calculation formulas, the flow coefficients for different cases were determined by experimental measurements. The paper presents the details regarding the construction and equipment of the experimental stand, as well as a new method for calculating the volumes of gas lost due to defects of this type. Thus, the aerial and buried defects were studied and the results obtained on statistical data were verified. Using the results of the study, the average emission of CH4 per year in Romania was calculated, and it was proven to be about 30% bigger than the European average. The findings of this study can help for a better understanding of the level of the losses and the effect on the final costs for the population, as well as the negative impact on the environment, in case the transporter does not take any measures.


Author(s):  
И.Е. Конюхов ◽  
О.Н. Морозова ◽  
С.С. Титов

В работе исследуется установка для отработки способа получения водорода путем окисления алюминиевого порошка водой. Выяснено, что при проведении такой реакции необходимо контролировать давление и температуру системы, так как возможен саморазогрев вследствие экзотермичности процесса окисления алюминия. С этой целью сконструирован экспериментальный стенд, состоящий из реактора с магнитной мешалкой, датчиков температуры и давления и блока управления. Такая установка позволяет регистрировать изменения давления и температуры во времени. Представлены зависимости давления и температуры в реакторе от времени. Построены диаграммы на языке моделирования UML, показывающие варианты и последовательность использования экспериментального стенда. С помощью разработанного стенда проведены постановочные экспериментальные исследования. В соответствии с полученными результатами можно сделать вывод, что в ходе данной реакции выделяется водород, о чем свидетельствует рост давления в реакторе. Установленные датчики позволяют контролировать параметры процесса в режиме реального времени. The paper investigates a testing installation of method of producing hydrogen by oxidizing aluminum powder with water. It was found out that during such a reaction, it is necessary to control the pressure and temperature of the system, since self-heating is possible due to the exothermicity of the aluminum oxidation process. For this purpose, an experimental stand consist of a reactor with a magnetic stirrer, temperature and pressure sensors and a control unit. An installation allows registering changes in pressure and temperature over time. The dependences of pressure and temperature in the reactor on time are presented in this paper. Diagrams are constructed in the UML modeling language, showing the options and the sequence of using the experimental stand. Staged experimental studies were carried out with the help of the developed stand. In accordance with the results obtained, it can be concluded that hydrogen is released during this reaction, as evidenced by an increase in pressure in the reactor. The installed sensors allow monitoring the process parameters in real time.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012062
Author(s):  
A N Pestova ◽  
O S Trushin

Abstract An experimental stand for express diagnostics of multilayer spin tunnel structures has been developed. The current-in-plane tunnelling method (CIPT) requires no processing, is fast, and provides reliable data which are reflective of the deposition only. The stand is based on the four-probe method for measuring resistance at external alternating magnetic field. This technique can be applied after only a short processing route, thereby saving time and resources, and reducing the potential for damaging the junction.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012158
Author(s):  
E N Bondarchuk ◽  
A S Pochtar ◽  
S V Vinogradov ◽  
V I Popov

Abstract The 1 MW experimental stand was modernized with a scroll swirler and a crushed fuel supply system. Comparative data on combustion and gasification of coal fuel crushed in high-stress mills - disintegrator, vibrocentrifugal and hammer mill - at a stand with a thermal power of 1 MW were obtained. The experiments used coal of the Kuznetsk Basin, grade D, with technical characteristics: Wr, % = 5.4; Ar, %=22.3; Vr, % = 32.3; Qsr, MJ/kg = 20.0. Elemental analysis showed that: Cr, %=54.6; Hr, % = 4.1; Nr, % = 1.3; Sr, % = 0.5; Or = 11.8. In experiments with grinding coal on a disintegrator mill, the value of H2 = 4.5 vol.% and CO = 9.4 vol.%, when grinding in a vibro-centrifugal mill, the values of H2 = 0.6 vol.% and CO = 5.8 vol.%, when grinding in a hammer mill, the values of H2 = 0.3 vol.% and CO = 2.8 vol.%. When studying the combustion of mechanochemically treated coal samples, it was found that, all other things being equal, the gasification parameters, namely, the gas concentration and the distribution of temperature zones, depend strongly on the type of equipment used for processing. In particular, processing to approximately the same degree of fineness in mechanical mills-activators with constrained impact and in free impact mills (disintegrators) resulted in different flame parameters.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012007
Author(s):  
L V Plotnikov ◽  
B P Zhilkin ◽  
Yu M Brodov ◽  
L E Osipov

Abstract Disclosure of the physical mechanism of the influence of the turbulence intensity of gas flows on the heat transfer level in pipes of different configurations is an urgent task in the field of heat and power engineering. A brief overview of the literature on this topic is given in the article. A description of the boundary conditions for modeling is presented. The main characteristics of the experimental stand and measuring instruments are described. The purpose of this study is to study the effect of the initial turbulence level of a stationary gas flow on the heat transfer intensity in long pipes with different cross sections. The study is carried out using numerical simulation. The simulation results are qualitatively confirmed using experimental data. The values of the local heat transfer coefficient are shown to increase from 5 to 17% with increasing turbulence intensity (from 2 to 10%) in pipes with different cross sections. The heat transfer intensity in a triangular pipe is found to increase up to 30% compared to a round pipe. It is revealed that there is an up to 15% suppression of heat transfer in a square pipe compared to a round pipe. The data obtained may be useful for the design of flow paths and gas exchange systems for power machines and installations.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012107
Author(s):  
A V Kuznetsov ◽  
E U Gorelikov

Abstract In the study of the combustion of samples, it was found that, other things being equal, under the experimental conditions and with the fixed technical characteristics of the fuel, different parameters of the flame are observed, namely, the speed of reaching a stationary mode, the completeness of fuel combustion, the size and distribution of temperature zones strongly depend on the methods used to carry out the mechanical fuel processing. Comparison of the results showed that under the same experimental conditions, the temperature distribution along the length of the experimental stand, in a stationary mode of operation, is higher for the composite fuel. In the case of composite fuel, 70 percent of the fuel burned up was observed at a 1 m section, which is indicative of these fuel consumption and kindling processes at industrial thermal power plants.


Sign in / Sign up

Export Citation Format

Share Document