A spectroscopic transmittance analytical modeling for field-widened Michelson interferometer employed by high spectral resolution lidars

Author(s):  
Zhongtao Cheng ◽  
Dong Liu ◽  
Yongying Yang ◽  
Hanlu Huang ◽  
Shitong Wang ◽  
...  
2016 ◽  
Author(s):  
Dong Liu ◽  
Zhongtao Cheng ◽  
Jing Luo ◽  
Yongying Yang ◽  
Yupeng Zhang ◽  
...  

2014 ◽  
Vol 41 (9) ◽  
pp. 0913003 ◽  
Author(s):  
黄寒璐 Huang Hanlu ◽  
刘东 Liu Dong ◽  
杨甬英 Yang Yongying ◽  
成中涛 Cheng Zhongtao ◽  
罗敬 Luo Jing ◽  
...  

2020 ◽  
Vol 28 (16) ◽  
pp. 23209 ◽  
Author(s):  
Yoshitaka Jin ◽  
Tomoaki Nishizawa ◽  
Nobuo Sugimoto ◽  
Shoken Ishii ◽  
Makoto Aoki ◽  
...  

2020 ◽  
Author(s):  
Michael Kiefer ◽  
Thomas von Clarmann ◽  
Bernd Funke ◽  
Maya García-Comas ◽  
Norbert Glatthor ◽  
...  

Abstract. A new global set of atmospheric temperature profiles is retrieved from recalibrated radiance spectra recorded with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Changes with respect to previous data versions include a new radiometric calibration considering the time-dependency of the detector non-linearity, and a more robust frequency calibration scheme. Temperature is retrieved using a smoothing constraint, while tangent altitude pointing information is constrained using optimal estimation. ECMWF ERA-Interim is used as temperature a priori below 43 km. Above, a priori data is based on data from the Whole Atmosphere Community Climate Model Version 4 (WACCM4). Bias-corrected fields from specified dynamics runs, sampled at the MIPAS times and locations, are used, blended with ERA-Interim between 43 and 53 km. Horizontal variability of temperature is considered by scaling an a priori 3D temperature field in the orbit plane in a way that the horizontal structure is provided by the a priori while the vertical structure comes from the measurements. Additional microwindows with better sensitivity at higher altitudes are used. The background continuum is jointly fitted with the target parameters up to 58 km altitude. The radiance offset correction is strongly regularized towards an empirically determined vertical offset profile. In order to avoid the propagation of uncertainties of O3 and H2O a priori assumptions, the abundances of these species are retrieved jointly with temperature. The retrieval is based on HITRAN 2016 spectroscopic data, with a few amendments. Temperature-adjusted climatologies of vibrational populations of CO2 states emitting in the 15 micron region are used in the radiative transfer modelling in order to account for non-local thermodynamic equilibrium. Numerical integration in the radiative transfer model is now performed at higher accuracy. The random component of the temperature uncertainty typically varies between 0.4 and 0.8 K, with occasional excursions up to 1.3 K above 60 km altitude. The leading sources of the random component of the temperature error are measurement noise, gain calibration uncertainty, spectral shift, and uncertain CO2 mixing ratios. The systematic error is caused by uncertainties in spectroscopic data and line shape uncertainties. It ranges from 0.2 K at 24 km altitude for northern midlatitude nighttime conditions to 2.3 K at 12 km for tropical nighttime conditions. The estimated total uncertainty amounts to values between 0.5 K at 24 km and northern polar winter conditions to 2.3 K at 12 km and northern midlatitude day conditions. The vertical resolution varies around 3 km for altitudes below 50 km. The long-term drift encountered in the previous temperature product has been largely reduced. The consistency between high spectral resolution results from 2002–2004 and the reduced spectral resolution results from 2005–2012 has been largely improved. As expected, most pronounced temperature differences between version 8 and previous data versions are found in elevated stratopause situations. The fact that the phase of temperature waves seen by MIPAS is not locked to the wave phase found in ECMWF analyses demonstrates that our retrieval provides independent information and does not merely reproduce the prior information.


2020 ◽  
Vol 237 ◽  
pp. 02012
Author(s):  
Xue Shen ◽  
Nanchao Wang ◽  
Dong Liu ◽  
Da Xiao ◽  
Yuhang Rong ◽  
...  

A dual-wavelength high-spectral-resolution lidar (HSRL) based on an iodine absorption filter and a field-widened Michelson interferometer (FWMI) has been developed to profile backscatter and extinction coefficients of aerosols and clouds accurately. This instrument was tested and calibrated on multiple observations in Hangzhou and Zhoushan, respectively, from August 2018 to April 2019. This paper discusses the design and the internal calibration method of the lidar system in detail, with several typical cases of observations and the analysis of these data products. The optical properties of urban aerosols in Hangzhou and the evolvement of clouds in Zhoushan are presented, respectively.


2016 ◽  
Vol 9 (7) ◽  
pp. 3355-3389 ◽  
Author(s):  
E. Eckert ◽  
A. Laeng ◽  
S. Lossow ◽  
S. Kellmann ◽  
G. Stiller ◽  
...  

Abstract. Profiles of CFC-11 (CCl3F) and CFC-12 (CCl2F2) of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the European satellite Envisat have been retrieved from versions MIPAS/4.61 to MIPAS/4.62 and MIPAS/5.02 to MIPAS/5.06 level-1b data using the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK) and Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Astrofísica de Andalucía (IAA). These profiles have been compared to measurements taken by the balloon-borne cryosampler, Mark IV (MkIV) and MIPAS-Balloon (MIPAS-B), the airborne MIPAS-STRatospheric aircraft (MIPAS-STR), the satellite-borne Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) and the High Resolution Dynamic Limb Sounder (HIRDLS), as well as the ground-based Halocarbon and other Atmospheric Trace Species (HATS) network for the reduced spectral resolution period (RR: January 2005–April 2012) of MIPAS. ACE-FTS, MkIV and HATS also provide measurements during the high spectral resolution period (full resolution, FR: July 2002–March 2004) and were used to validate MIPAS CFC-11 and CFC-12 products during that time, as well as profiles from the Improved Limb Atmospheric Spectrometer, ILAS-II. In general, we find that MIPAS shows slightly higher values for CFC-11 at the lower end of the profiles (below  ∼  15 km) and in a comparison of HATS ground-based data and MIPAS measurements at 3 km below the tropopause. Differences range from approximately 10 to 50 pptv ( ∼  5–20 %) during the RR period. In general, differences are slightly smaller for the FR period. An indication of a slight high bias at the lower end of the profile exists for CFC-12 as well, but this bias is far less pronounced than for CFC-11 and is not as obvious in the relative differences between MIPAS and any of the comparison instruments. Differences at the lower end of the profile (below  ∼  15 km) and in the comparison of HATS and MIPAS measurements taken at 3 km below the tropopause mainly stay within 10–50 pptv (corresponding to  ∼  2–10 % for CFC-12) for the RR and the FR period. Between  ∼  15 and 30 km, most comparisons agree within 10–20 pptv (10–20 %), apart from ILAS-II, which shows large differences above  ∼  17 km. Overall, relative differences are usually smaller for CFC-12 than for CFC-11. For both species – CFC-11 and CFC-12 – we find that differences at the lower end of the profile tend to be larger at higher latitudes than in tropical and subtropical regions. In addition, MIPAS profiles have a maximum in their mixing ratio around the tropopause, which is most obvious in tropical mean profiles. Comparisons of the standard deviation in a quiescent atmosphere (polar summer) show that only the CFC-12 FR error budget can fully explain the observed variability, while for the other products (CFC-11 FR and RR and CFC-12 RR) only two-thirds to three-quarters can be explained. Investigations regarding the temporal stability show very small negative drifts in MIPAS CFC-11 measurements. These instrument drifts vary between  ∼  1 and 3 % decade−1. For CFC-12, the drifts are also negative and close to zero up to  ∼  30 km. Above that altitude, larger drifts of up to  ∼  50 % decade−1 appear which are negative up to  ∼  35 km and positive, but of a similar magnitude, above.


Sign in / Sign up

Export Citation Format

Share Document