Local anomaly detection algorithm based on sliding windows in spectral space

2014 ◽  
Author(s):  
Zhiyong Li ◽  
Shilin Zhou ◽  
Yong Han ◽  
Liangliang Wang
2015 ◽  
Vol 8 (4) ◽  
pp. 741-749 ◽  
Author(s):  
Zhiyong Li ◽  
Jonathan Li ◽  
Shilin Zhou ◽  
Saied Pirasteh

2020 ◽  
Author(s):  
Bo Zhang ◽  
Hongyu Zhang ◽  
Pablo Moscato

<div>Complex software intensive systems, especially distributed systems, generate logs for troubleshooting. The logs are text messages recording system events, which can help engineers determine the system's runtime status. This paper proposes a novel approach named ADR (stands for Anomaly Detection by workflow Relations) that employs matrix nullspace to mine numerical relations from log data. The mined relations can be used for both offline and online anomaly detection and facilitate fault diagnosis. We have evaluated ADR on log data collected from two distributed systems, HDFS (Hadoop Distributed File System) and BGL (IBM Blue Gene/L supercomputers system). ADR successfully mined 87 and 669 numerical relations from the logs and used them to detect anomalies with high precision and recall. For online anomaly detection, ADR employs PSO (Particle Swarm Optimization) to find the optimal sliding windows' size and achieves fast anomaly detection.</div><div>The experimental results confirm that ADR is effective for both offline and online anomaly detection. </div>


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Yadi Wang ◽  
Wangyang Yu ◽  
Peng Teng ◽  
Guanjun Liu ◽  
Dongming Xiang

With the development of smart devices and mobile communication technologies, e-commerce has spread over all aspects of life. Abnormal transaction detection is important in e-commerce since abnormal transactions can result in large losses. Additionally, integrating data flow and control flow is important in the research of process modeling and data analysis since it plays an important role in the correctness and security of business processes. This paper proposes a novel method of detecting abnormal transactions via an integration model of data and control flows. Our model, called Extended Data Petri net (DPNE), integrates the data interaction and behavior of the whole process from the user logging into the e-commerce platform to the end of the payment, which also covers the mobile transaction process. We analyse the structure of the model, design the anomaly detection algorithm of relevant data, and illustrate the rationality and effectiveness of the whole system model. Through a case study, it is proved that each part of the system can respond well, and the system can judge each activity of every mobile transaction. Finally, the anomaly detection results are obtained by some comprehensive analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiong Yang ◽  
Yuling Chen ◽  
Xiaobin Qian ◽  
Tao Li ◽  
Xiao Lv

The distributed deployment of wireless sensor networks (WSNs) makes the network more convenient, but it also causes more hidden security hazards that are difficult to be solved. For example, the unprotected deployment of sensors makes distributed anomaly detection systems for WSNs more vulnerable to internal attacks, and the limited computing resources of WSNs hinder the construction of a trusted environment. In recent years, the widely observed blockchain technology has shown the potential to strengthen the security of the Internet of Things. Therefore, we propose a blockchain-based ensemble anomaly detection (BCEAD), which stores the model of a typical anomaly detection algorithm (isolated forest) in the blockchain for distributed anomaly detection in WSNs. By constructing a suitable block structure and consensus mechanism, the global model for detection can iteratively update to enhance detection performance. Moreover, the blockchain guarantees the trust environment of the network, making the detection algorithm resistant to internal attacks. Finally, compared with similar schemes, in terms of performance, cost, etc., the results prove that BCEAD performs better.


Sign in / Sign up

Export Citation Format

Share Document