Visualization of deep blood vessels in speckle imaging using homogeneity measurement of the co-occurrence matrix

Author(s):  
Jose A. Arias-Cruz ◽  
Cruz E. Perez-Corona ◽  
Hayde Peregrina-Barreto ◽  
Ruben Ramos-Garcia ◽  
Julio Cesar Ramirez-San-Juan
2017 ◽  
Vol 22 (6) ◽  
pp. 066004 ◽  
Author(s):  
Hayde Peregrina-Barreto ◽  
Elizabeth Perez-Corona ◽  
Jose Rangel-Magdaleno ◽  
Ruben Ramos-Garcia ◽  
Roger Chiu ◽  
...  

2019 ◽  
Vol 10 (4) ◽  
pp. 2020
Author(s):  
Jose Angel Arias-Cruz ◽  
Roger Chiu ◽  
Hayde Peregrina-Barreto ◽  
Ruben Ramos-Garcia ◽  
Teresita Spezzia-Mazzocco ◽  
...  

2020 ◽  
Author(s):  
Miguel A. Gama Sosa ◽  
Rita De Gasperi ◽  
Gissel M. Perez ◽  
Patrick R. Hof ◽  
Gregory A. Elder

Author(s):  
D. M. DePace

The majority of blood vessels in the superior cervical ganglion possess a continuous endothelium with tight junctions. These same features have been associated with the blood brain barrier of the central nervous system and peripheral nerves. These vessels may perform a barrier function between the capillary circulation and the superior cervical ganglion. The permeability of the blood vessels in the superior cervical ganglion of the rat was tested by intravenous injection of horseradish peroxidase (HRP). Three experimental groups of four animals each were given intravenous HRP (Sigma Type II) in a dosage of.08 to.15 mg/gm body weight in.5 ml of.85% saline. The animals were sacrificed at five, ten or 15 minutes following administration of the tracer. Superior cervical ganglia were quickly removed and fixed by immersion in 2.5% glutaraldehyde in Sorenson's.1M phosphate buffer, pH 7.4. Three control animals received,5ml of saline without HRP. These were sacrificed on the same time schedule. Tissues from experimental and control animals were reacted for peroxidase activity and then processed for routine transmission electron microscopy.


Author(s):  
M.C. Castillo-Jessen ◽  
A. González-Angulo

Information regarding the normal morphology of uterine blood vessels at ultrastructural level in mammals is scarce Electron microscopy studies dealing with endometrial vasculature despite the functional implications due to hormone priming are not available. Light microscopy observations with combined injection of dyes and microradiography along with histochemical studies does not enable us to know the detailed fine structure of the possible various types of blood vessels in this tissue. The present work has been designed to characterize the blood vessels of endometrium of mice as well as the behavior of the endothelium to injection of low molecular weight proteins during the normal estrous cycle in this animal. One hundred and forty female albino mice were sacrificed after intravascular injection of horse radish peroxidase (HRP) at 30 seconds, 5, 15, 30 and 60 minutes.


Author(s):  
Fred E. Hossler

Preparation of replicas of the complex arrangement of blood vessels in various organs and tissues has been accomplished by infusing low viscosity resins into the vasculature. Subsequent removal of the surrounding tissue by maceration leaves a model of the intricate three-dimensional anatomy of the blood vessels of the tissue not obtainable by any other procedure. When applied with care, the vascular corrosion casting technique can reveal fine details of the microvasculature including endothelial nuclear orientation and distribution (Fig. 1), locations of arteriolar sphincters (Fig. 2), venous valve anatomy (Fig. 3), and vessel size, density, and branching patterns. Because casts faithfully replicate tissue vasculature, they can be used for quantitative measurements of that vasculature. The purpose of this report is to summarize and highlight some quantitative applications of vascular corrosion casting. In each example, casts were prepared by infusing Mercox, a methyl-methacrylate resin, and macerating the tissue with 20% KOH. Casts were either mounted for conventional scanning electron microscopy, or sliced for viewing with a confocal laser microscope.


Sign in / Sign up

Export Citation Format

Share Document