A forty-year history of fiber optic smart structures

2017 ◽  
Author(s):  
Eric Udd ◽  
Ingrid U. Scheel
1996 ◽  
Vol 84 (6) ◽  
pp. 884-894 ◽  
Author(s):  
E. Udd
Keyword(s):  

2015 ◽  
Vol 49 (1) ◽  
pp. 31-46 ◽  
Author(s):  
Ron Cramer ◽  
David Shaw ◽  
Robert Tulalian ◽  
Pabs Angelo ◽  
Maarten van Stuijvenberg

AbstractTimely pipeline leak detection is a significant business issue in view of a long history of catastrophic incidents and growing intolerance for such events. It is vital to flag containment loss and location quickly, credibly, and reliably for all green or brown field critical lines in order to shut down the line safely and isolate the leak. Pipelines are designed to transport hydrocarbons safely; however, leaks have severe safety, economic, environmental, and reputational effects. This paper will highlight robust, reliable, and cost-effective methods, most of which leverage real-time instrumentation, telecommunications, SCADA, DCS, and associated online leak detection applications. The purpose of this paper will be to review the underlying leak detection business issues, catalogue the functional challenges, and describe experiences with available technologies. Internal and external techniques will be described, including basic rate of change of flow and pressure, compensated mass balance, statistical, real-time transient modeling, acoustic wave sensing, fiber optic cable (distributed temperature, distributed acoustic sensing), and subsea hydrophones. The paper will also describe related credibility, deployment, organizational, and maintenance issues with an emphasis on upstream applications. The scope will include leak detection for pipelines conveying various flowing fluids—gas, liquid, and multiphase flow. Pipeline environments will include subsea and onshore. Advantages, disadvantages, and experiences with these techniques will be described and analyzed.


1996 ◽  
Author(s):  
Tomasz R. Wolinski ◽  
Andrzej W. Domanski ◽  
Pawel Galazka

2006 ◽  
Vol 321-323 ◽  
pp. 212-216
Author(s):  
Il Bum Kwon ◽  
Chi Yeop Kim ◽  
Dae Cheol Seo

Smart structures are to be possessed many functions to sense the external effects, such as seismic loads, temperature, and impact by some explosion, influenced on the safety of structures. This work was focused on the development of a sensing function of smart structures to get the temperature distribution on structures to detect fire occurrences. A fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor system was developed to detect the fire occurrence by measuring the temperature distribution of a building’s exterior surfaces. This fiber optic sensor system was constructed with a laser diode and two electro-optic modulators, which made this system faster than systems using only one electro-optic modulator. The temperature distributed on an optical fiber can be measured by this fiber optic BOTDA sensor. An optical fiber, 1400 m in length, was installed on the surface of a building. Using real-time processing of the sensor system, we were able to monitor temperature distribution on the building’s surfaces, and changes in temperature distribution were also measured accurately with this fiber optic sensor.


Sign in / Sign up

Export Citation Format

Share Document