Patterns recognition of electric brain activity using artificial neural networks

2017 ◽  
Author(s):  
V. Yu. Musatov ◽  
S. V. Pchelintseva ◽  
A. E. Runnova ◽  
A. E. Hramov
Author(s):  
Emilio Del-Moral-Hernandez

Artificial Neural Networks have proven, along the last four decades, to be an important tool for modelling of the functional structures of the nervous system, as well as for the modelling of non-linear and adaptive systems in general, both biological and non biological (Haykin, 1999). They also became a powerful biologically inspired general computing framework, particularly important for solving non-linear problems with reduced formalization and structure. At the same time, methods from the area of complex systems and non-linear dynamics have shown to be useful in the understanding of phenomena in brain activity and nervous system activity in general (Freeman, 1992; Kelso, 1995). Joining these two areas, the development of artificial neural networks employing rich dynamics is a growing subject in both arenas, theory and practice. In particular, model neurons with rich bifurcation and chaotic dynamics have been developed in recent decades, for the modelling of complex phenomena in biology as well as for the application in neuro-like computing. Some models that deserve attention in this context are those developed by Kazuyuki Aihara (1990), Nagumo and Sato (1972), Walter Freeman (1992), K. Kaneko (2001), and Nabil Farhat (1994), among others. The following topics develop the subject of Chaotic Neural Networks, presenting several of the important models of this class and briefly discussing associated tools of analysis and typical target applications.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3346 ◽  
Author(s):  
Raluca Maria Aileni ◽  
Sever Pasca ◽  
Adriana Florescu

Predictive observation and real-time analysis of the values of biomedical signals and automatic detection of epileptic seizures before onset are beneficial for the development of warning systems for patients because the patient, once informed that an epilepsy seizure is about to start, can take safety measures in useful time. In this article, Daubechies discrete wavelet transform (DWT) was used, coupled with analysis of the correlations between biomedical signals that measure the electrical activity in the brain by electroencephalogram (EEG), electrical currents generated in muscles by electromyogram (EMG), and heart rate monitoring by photoplethysmography (PPG). In addition, we used artificial neural networks (ANN) for automatic detection of epileptic seizures before onset. We analyzed 30 EEG recordings 10 min before a seizure and during the seizure for 30 patients with epilepsy. In this work, we investigated the ANN dimensions of 10, 50, 100, and 150 neurons, and we found that using an ANN with 150 neurons generates an excellent performance in comparison to a 10-neuron-based ANN. However, this analyzes requests in an increased amount of time in comparison with an ANN with a lower neuron number. For real-time monitoring, the neurons number should be correlated with the response time and power consumption used in wearable devices.


Author(s):  
Kobiljon Kh. Zoidov ◽  
◽  
Svetlana V. Ponomareva ◽  
Daniel I. Serebryansky ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document