Instrument development at the European Space Agency for future earth observation missions

1995 ◽  
Author(s):  
Roland Meynart
Author(s):  
Alberto Lorenzo-Alonso ◽  
Marino Palacios ◽  
Ángel Utanda

Disaster Risk Reduction (DRR) is a high priority on the agenda of main stakeholders involved in sustainable development and Earth Observation (EO) can provide useful, timely and economical information in this context. This short communication outlines the European Space Agency’s (ESA) specific initiative to promote the use and uptake of satellite data in the global development community: ‘Earth Observation for Sustainable Development (EO4SD)’. One activity area under EO4SD is devoted to Disaster Risk Reduction: EO4SD DRR. Within this project, a team of European companies and institutions are tasked to develop EO services for supporting the implementation of DRR in International Financial Institutions’ (IFI) projects. Integration of satellite-borne data and ancillary data to generate insight and actionable information is thereby considered a key factor for improved decision making. To understand and fully account for the essential user requirements (IFI & Client States), engagement with technical leaders is crucial. Fit-for-purpose use of data and comprehensive capacity building eventually ensure scalability and long-term transferability. Future perspectives of EO4SD and DRR regarding mainstreaming are also highlighted.


2009 ◽  
Vol 4 (3) ◽  
pp. 4-16 ◽  
Author(s):  
Sergio Albani ◽  
David Giaretta

ESA-ESRIN, the European Space Agency Centre for Earth Observation (EO), is the largest European EO data provider and operates as the reference European centre for EO payload data exploitation. EO Space Missions provide global coverage of the Earth across both space and time generating on a routine continuous basis huge amounts of data (from a variety of sensors) that need to be acquired, processed, elaborated, appraised and archived by dedicated systems. Long-term Preservation of these data and of the ability to discover, access and process them is a fundamental issue and a major challenge at programmatic, technological and operational levels.Moreover these data are essential for scientists needing broad series of data covering long time periods and from many sources. They are used for many types of investigations including ones of international importance such as the study of the Global Change and the Global Monitoring for Environment and Security (GMES) Program. Therefore it is of primary importance not only to guarantee easy accessibility of historical data but also to ensure users are able to understand and use them; in fact data interpretation can be even more complicated given the fact that scientists may not have (or may not have access to) the right knowledge to interpret these data correctly.To satisfy these requirements, the European Space Agency (ESA), in addition to other internal initiatives, is participating in several EU-funded projects such as CASPAR (Cultural, Artistic, and Scientific knowledge for Preservation, Access and Retrieval), which is building a framework to support the end-to-end preservation lifecycle for digital information, based on the OAIS reference model, with a strong focus on the preservation of the knowledge associated with data.In the CASPAR Project ESA plays the role of both user and infrastructure provider for one of the scientific testbeds, putting into effect dedicated scenarios with the aim of validating the CASPAR solutions in the Earth Science domain. The other testbeds are in the domains of Cultural Heritage and of Contemporary Performing Arts; together they provide a severe test of preservation tools and techniques.In the context of the current ESA overall strategies carried out in collaboration with European EO data owners/providers, entities and institutions which have the objective of guaranteeing long-term preservation of EO data and knowledge, this paper will focus on the ESA participation and contribution to the CASPAR Project, describing in detail the implementation of the ESA scientific testbed.


2019 ◽  
Vol 11 (17) ◽  
pp. 1993 ◽  
Author(s):  
Mertikas ◽  
Donlon ◽  
Vuilleumier ◽  
Cullen ◽  
Féménias ◽  
...  

Satellite altimeters have been producing, as of 1992, an amazing and historic record of sea level changes. As Europe moves into full operational altimetry, it has become imperative that the quality of these monitoring signals with their uncertainties should be controlled, fully and properly descripted, but also traced and connected to undisputable standards and units. Excellent quality is the foundation of these operational services of Europe in altimetry. In line with the above, the strategy of the Fiducial Reference Measurements for Altimetry (FRM4ALT) has been introduced to address and to achieve reliable, long-term, consistent, and undisputable satellite altimetry products for Earth observation and for sea-level change monitoring. FRM4ALT has been introduced and implemented by the European Space Agency in an effort to reach a uniform and absolute standardization for calibrating satellite altimeters. This paper examines the problem and the need behind the FRM4ALT principle to achieve an objective Earth observation. Secondly, it describes the expected FRM products and services which are to come into being out of this new observational strategy. Thirdly, it outlines the technology and the services required for reaching this goal. And finally, it elaborates upon the necessary resources, skills, partnerships, and facilities for establishing FRM standardization for altimetry.


2021 ◽  
Author(s):  
Georgia Doxani ◽  
Eric F. Vermote ◽  
Sergii Skakun ◽  
Ferran Gascon ◽  
Jean-Claude Roger

<p>The atmospheric correction inter-comparison exercise (ACIX) is an international initiative to benchmark various state-of-the-art atmospheric correction (AC) processors. The first inter-comparison exercise initiated in 2016 with the collaboration of European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) in the frame of the CEOS WGCV (Committee on Earth Observation Satellites, Working Group on Calibration & Validation). The evolution of the participating processors and the increasing interest of AC community to repeat and improve such experiment stimulated the continuation of ACIX and its second implementation (ACIX-II). In particular, 12 AC developer teams from Europe and USA participated in ACIX-II over land sites. In this presentation the benchmarking protocol, i.e. test sites, input data, inter-comparison metrics, etc. will be briefly described and some representative results of ACIX-II will be presented. The inter-comparison outputs varied depending on the sensors, products and sites, demonstrating the strengths and weaknesses of the corresponding processors. In continuation of ACIX-I achievements, the outcomes of the second one are expected to provide an enhanced standardised approach to inter-compare AC processing products, i.e. Aerosol Optical Thickness (AOT), Water Vapour (WV) and Surface Reflectance (SR), and quantitively assessed their quality when in situ measurements are available.</p>


Author(s):  
Branka Cuca ◽  
Raffaella Brumana

NEREUS is a Network of Regions Using Space Technologies established in Brussels in 2007. The need of this network emerged out of conviction that the regions are the key users and procurers of space-based applications, products and services. Since more than decade, the mission of the Network has been to raise awareness of the benefits that space technologies can offer to the citizens, especially in a regional context, for public services and public policies. Within this framework, and with support by the European Commission and European Space Agency, NEREUS has developed several publications that have promoted different Earth Observation applications such as "The growing uses of Copernicus across Europe’s Regions" (2012) and the latest one "The Ever Growing Use of Copernicus across Europe’s Regions" (2018). Politecnico di Milano was in charge of Publication management of this last use-cases collection. The paper here presented illustrates and discusses the result of the Publication with a specific focus on applications regarding use of Earth Observation and Copernicus Programme for Cultural Heritage.


2010 ◽  
Vol 7 (5) ◽  
pp. 7899-7956 ◽  
Author(s):  
Z. Su ◽  
W. Dorigo ◽  
D. Fernández-Prieto ◽  
M. Van Helvoirt ◽  
K. Hungershoefer ◽  
...  

Abstract. Observing and monitoring the different components of the global water cycle and their dynamics are essential steps to understand the climate of the Earth, forecast the weather, predict natural disasters like floods and droughts, and improve water resources management. Earth observation technology is a unique tool to provide a global understanding of many of the essential variables governing the water cycle and monitor their evolution over time from global to basin scales. In the coming years an increasing number of Earth observation missions will provide an unprecedented capacity to quantify several of these variables on a routine basis. In this context, the European Space Agency (ESA), in collaboration with the Global Energy and Water Cycle Experiment (GEWEX) of the World Climate Research Program (WCRP), launched the Water Cycle Multi-Mission Observation Strategy (WACMOS) project in 2009. The project aims at developing and validating a novel set of geo-information products relevant to the water cycle covering the following thematic areas: evapotranspiration, soil moisture, cloud characterization and water vapour. The generation of these products is based on a number of innovative techniques and methods aiming at exploiting the synergies of different types of Earth observation data available today to the science community. This paper provides an overview of the major findings of the project with the ultimate goal of demonstrating the potential of innovative multi-mission based strategies to improve current observations by maximizing the synergistic use of the different types of information provided by the currently available observation systems.


Sign in / Sign up

Export Citation Format

Share Document