Spatio-temporal variations in characteristics of the IR emissions of atomic oxygen and of carbon dioxide in the upper atmosphere

Author(s):  
Vladimir Perminov ◽  
V. Yu. Khomich ◽  
Irina V. Medvedeva ◽  
Anatoly Semenov
1971 ◽  
Vol 40 ◽  
pp. 253-256 ◽  
Author(s):  
C. A. Barth ◽  
W. G. Fastie ◽  
C. W. Hord ◽  
J. B. Pearce ◽  
K. K. Kelly ◽  
...  

Emission features from ionized carbon dioxide and carbon monoxide were measured in the 1900- to 4300-Å spectral region. The Lyman-α 1216-Å line of atomic hydrogen and the 1304-, 1356-, and 2972-Å lines of atomic oxygen were observed.


1974 ◽  
Vol 29 (2) ◽  
pp. 185-188
Author(s):  
Charles A. Barth

Photodissociation of carbon dioxide produces O (1S) atoms and CO (a3Π) molecules in the Mars upper atmosphere. Calculations of the emission rate of the atomic oxygen 2972 Å line and the carbon monoxide Cameron bands produced by the photodissociation mechanism are factors of 3 and 10, respectively, smaller than the emission rates observed by Mariner ultraviolet spectrometers. Laboratory measurements are needed to understand the discrepancies.


Author(s):  
Syed Shehzad Hassan ◽  
Maham Mukhtar ◽  
Ehsan ul Haq ◽  
Muneeb Aamir ◽  
Hafiz M Rafique ◽  
...  

Anthropogenic activities are responsible for enhancing the concentration of various toxic gases that produces bad Ozone in the troposphere which is harmful to human health. The specific objective of this research was to analyze the spatio-temporal variations in a vertical column of Ozone (O3) over Saudi Arabia during 2006-2016 using Atmospheric Infrared Sounder (AIRS) onboard AQUA platform and AErosol RObotic NETwork (AERONET) data. The results show that the optical depth of Ozone column varied from 252 Dobson Units (DU) to 264 DU. The main reason of this variation corresponds to the increase in O3 precursors including Carbon Dioxide (CO2), Nitrogen Dioxide (NO2) and Sulfur Dioxide (SO2). The concentration of CO2 varied between (379-401) Parts Per Million (PPM), SO2 varied (3.5x10-6 - 4x10-6kg m-2) kg m-2 and NO2 varies (2.25x1015 - 2.5x1015)1/cm2 during the investigated timeframe. The results confirm that NO2 and SO2 have contributed directly in O3 formation while CO2 just increased regional temperatures that enhanced the optical depth of O3. Keywords: AIRS, AERONET, Carbon dioxide, Nitrogen dioxide, Sulfur dioxide, Aerosol optical depth and Dopson Unit.


2012 ◽  
Vol 20 (3) ◽  
pp. 356-362 ◽  
Author(s):  
Xiao-Lin YANG ◽  
Zhen-Wei SONG ◽  
Hong WANG ◽  
Quan-Hong SHI ◽  
Fu CHEN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document