Multimode optical fiber polymer-dispersed liquid crystal electric field sensor

1996 ◽  
Author(s):  
Beatrys M. Lacquet ◽  
Pieter L. Swart
Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 732
Author(s):  
Anna P. Gardymova ◽  
Mikhail N. Krakhalev ◽  
Victor Ya. Zyryanov ◽  
Alexandra A. Gruzdenko ◽  
Andrey A. Alekseev ◽  
...  

The electro-optical properties of polymer dispersed liquid crystal (PDLC) films are highly dependent on the features of the contained liquid crystal (LC) droplets. Cholesteric LC droplets with homeotropic boundaries can form several topologically different orientational structures, including ones with single and more point defects, layer-like, and axisymmetric twisted toroidal structures. These structures are very sensitive to an applied electric field. In this work, we have demonstrated experimentally and by computer simulations that twisted toroidal droplets reveal strong structural response to the electric field. In turn, this leads to vivid changes in the optical texture in crossed polarizers. The response of droplets of different sizes were found to be equivalent in terms of dimensionless parameters. In addition, the explanation of this phenomenon showed a comparison of theoretical and experimental structural response curves aids to determine the shape of the droplet. Finally, we demonstrated that the addition of a dichroic dye allows such films to be used as optical filters with adjustable color even without polarizers.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3725
Author(s):  
Jorge Francés ◽  
Sergio Bleda ◽  
Daniel Puerto ◽  
Sergi Gallego ◽  
Andrés Márquez ◽  
...  

This work presents recent results derived from the rigorous modelling of holographic polymer-dispersed liquid crystal (H-PDLC) gratings. More precisely, the diffractive properties of transmission gratings are the focus of this research. This work extends previous analysis performed by the authors but includes new features and approaches. More precisely, full 3D numerical modelling was carried out in all analyses. Each H-PDLC sample was generated randomly by a set of ellipsoid geometry-based LC droplets. The liquid crystal (LC) director inside each droplet was computed by the minimisation of the Frank elastic free energy as a function of the applied electric field. The analysis carried out considered the effects of Frank elastic constants K11, K22 and K33; the anchoring strength W0; and even the saddle-splay constant K24. The external electric field induced an orientation of the LC director, modifying the optical anisotropy of the optical media. This effect was analysed using the 3D split-field finite-difference time-domain (SF-FDTD) method. In order to reduce the computational costs due to a full 3D tensorial analysis, a highly optimised method for high-performance computing solutions (HPC) was developed. The influences of the anchoring and voltage on the diffraction efficiencies were investigated, showing the potential of this approach.


2006 ◽  
Author(s):  
Haishan Sun ◽  
Anna Pyajt ◽  
Jingdong Luo ◽  
Zhengwei Shi ◽  
Steven Hau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document