liquid crystal films
Recently Published Documents


TOTAL DOCUMENTS

721
(FIVE YEARS 55)

H-INDEX

51
(FIVE YEARS 4)

2021 ◽  
Vol 2015 (1) ◽  
pp. 012029
Author(s):  
E A Chernykh ◽  
A N Filippov ◽  
A M Alekseev ◽  
M A Makhiboroda ◽  
S S Kharintsev

Abstract We develop a photothermal technology to control optical heating of polymer and liquid crystal films through a refractory titanium nitride (TiN) metasurface. The metasurface represents an array of identical square-shaped TiN nanoantennas on a Si substrate. Upon CW laser illumination, a TiN nanoantenna experiences anomalous Joule heating at a plasmon resonance. A temperature rise provides a unique opportunity for locally probing phase transitions. In the case of heterogeneous PMMA thin films or polymeric blends, a controlled optical heating is needed to probe the glass transition temperature (Tg) of their constituents. Here, we model a controlled thermal response originating from the TiN nanoantenna under CW laser illumination by using FDTD/FEM methods.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1324
Author(s):  
Xiao-Yao Wei ◽  
Tao Lin ◽  
Le Wang ◽  
Xue-Feng Yin

A cellulose nanocrystal (CNC) suspension can form liquid crystal films with unique self-assembly behaviors. This gives CNC films a special iridescence, which has potential in many aspects, but the brittleness of pure CNC films limits their application. In this work, we propose a simple physical mixing method to obtain CNC film by adding D-sorbitol as a plasticizer. We first found that low D-sorbitol content (less than 6 wt% in CNC/DS composite solution) did not make a significant difference compared with pure CNC films in optical performance and, at the same time, the mechanical properties of the CNC films were improved. The various low contents of D-sorbitol can be well dispersed in CNC aqueous suspension, and the wavelength of the selectively reflected phenomenon is relatively stable and slightly decreased at 5 nm for concentrations from 0 to 6%. This phenomenon is opposite to that generally reported, where the wavelength of the selective reflected phenomenon increases obviously with the increase in plastic content. The pitch of the chiral structure decreased from 406 to 362 nm with an increase in D-sorbitol concentration. When the content of D-sorbitol reached 4%, the tensile strength, elongation at break, and Young modulus increased to 39.9 Mpa, 3.00%, and 2.99 GPa, respectively.


2021 ◽  
pp. 1-11
Author(s):  
Le Gia Trung ◽  
Subhangi Subedi ◽  
Avinash Kumar Rella ◽  
Vineet Kumar ◽  
Shin-Woong Kang

Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2906
Author(s):  
Chia-Yi Huang ◽  
Shih-Hung Lin

An organic solvent sensor of polymer-dispersed liquid crystals (PDLCs) film is fabricated by a combination of tri-functional monomers and LCs. When the patterned PDLC film comes into contact with the organic solvent, the organic solvent will penetrate into the film to induce the orientation of the liquid crystals, which will change from an ordered to a disordered state, which causes the PDLC film to scatter incident light. The experiment used acetone and ethanol as the organic solvents of interest. The results show that the patterned PDLC film has a stronger response to acetone than to ethanol. Based on the difference in the intensity of light scattering and the response time of the patterned PDLC film to different organic solvents, the results can be used to identify and recognize different types of organic solvents.


Sign in / Sign up

Export Citation Format

Share Document