Cloud detection of remote sensing images on Landsat-8 by deep learning

Author(s):  
xiaoshuang zeng ◽  
Jungang Yang ◽  
Xinpu Deng ◽  
Wei An ◽  
Jun Li
2021 ◽  
Vol 13 (16) ◽  
pp. 3319
Author(s):  
Nan Ma ◽  
Lin Sun ◽  
Chenghu Zhou ◽  
Yawen He

Automatic cloud detection in remote sensing images is of great significance. Deep-learning-based methods can achieve cloud detection with high accuracy; however, network training heavily relies on a large number of labels. Manually labelling pixel-wise level cloud and non-cloud annotations for many remote sensing images is laborious and requires expert-level knowledge. Different types of satellite images cannot share a set of training data, due to the difference in spectral range and spatial resolution between them. Hence, labelled samples in each upcoming satellite image are required to train a new deep-learning-based model. In order to overcome such a limitation, a novel cloud detection algorithm based on a spectral library and convolutional neural network (CD-SLCNN) was proposed in this paper. In this method, the residual learning and one-dimensional CNN (Res-1D-CNN) was used to accurately capture the spectral information of the pixels based on the prior spectral library, effectively preventing errors due to the uncertainties in thin clouds, broken clouds, and clear-sky pixels during remote sensing interpretation. Benefiting from data simulation, the method is suitable for the cloud detection of different types of multispectral data. A total of 62 Landsat-8 Operational Land Imagers (OLI), 25 Moderate Resolution Imaging Spectroradiometers (MODIS), and 20 Sentinel-2 satellite images acquired at different times and over different types of underlying surfaces, such as a high vegetation coverage, urban area, bare soil, water, and mountains, were used for cloud detection validation and quantitative analysis, and the cloud detection results were compared with the results from the function of the mask, MODIS cloud mask, support vector machine, and random forest. The comparison revealed that the CD-SLCNN method achieved the best performance, with a higher overall accuracy (95.6%, 95.36%, 94.27%) and mean intersection over union (77.82%, 77.94%, 77.23%) on the Landsat-8 OLI, MODIS, and Sentinel-2 data, respectively. The CD-SLCNN algorithm produced consistent results with a more accurate cloud contour on thick, thin, and broken clouds over a diverse underlying surface, and had a stable performance regarding bright surfaces, such as buildings, ice, and snow.


2021 ◽  
Vol 13 (18) ◽  
pp. 3617
Author(s):  
Xudong Yao ◽  
Qing Guo ◽  
An Li

Clouds in optical remote sensing images cause spectral information change or loss, that affects image analysis and application. Therefore, cloud detection is of great significance. However, there are some shortcomings in current methods, such as the insufficient extendibility due to using the information of multiple bands, the intense extendibility due to relying on some manually determined thresholds, and the limited accuracy, especially for thin clouds or complex scenes caused by low-level manual features. Combining the above shortcomings and the requirements for efficiency in practical applications, we propose a light-weight deep learning cloud detection network based on DeeplabV3+ architecture and channel attention module (CD-AttDLV3+), only using the most common red–green–blue and near-infrared bands. In the CD-AttDLV3+ architecture, an optimized backbone network-MobileNetV2 is used to reduce the number of parameters and calculations. Atrous spatial pyramid pooling effectively reduces the information loss caused by multiple down-samplings while extracting multi-scale features. CD-AttDLV3+ concatenates more low-level features than DeeplabV3+ to improve the cloud boundary quality. The channel attention module is introduced to strengthen the learning of important channels and improve the training efficiency. Moreover, the loss function is improved to alleviate the imbalance of samples. For the Landsat-8 Biome set, CD-AttDLV3+ achieves the highest accuracy in comparison with other methods, including Fmask, SVM, and SegNet, especially for distinguishing clouds from bright surfaces and detecting light-transmitting thin clouds. It can also perform well on other Landsat-8 and Sentinel-2 images. Experimental results indicate that CD-AttDLV3+ is robust, with a high accuracy and extendibility.


2020 ◽  
Vol 12 (12) ◽  
pp. 1937
Author(s):  
Mengjiao Qin ◽  
Linshu Hu ◽  
Zhenhong Du ◽  
Yi Gao ◽  
Lianjie Qin ◽  
...  

Lakes have been identified as an important indicator of climate change and a finer lake area can better reflect the changes. In this paper, we propose an effective unsupervised deep gradient network (UDGN) to generate a higher resolution lake area from remote sensing images. By exploiting the power of deep learning, UDGN models the internal recurrence of information inside the single image and its corresponding gradient map to generate images with higher spatial resolution. The gradient map is derived from the input image to provide important geographical information. Since the training samples are only extracted from the input image, UDGN can adapt to different settings per image. Based on the superior adaptability of the UDGN model, two strategies are proposed for super-resolution (SR) mapping of lakes from multispectral remote sensing images. Finally, Landsat 8 and MODIS (moderate-resolution imaging spectroradiometer) images from two study areas on the Tibetan Plateau in China were used to evaluate the performance of UDGN. Compared with four unsupervised SR methods, UDGN obtained the best SR results as well as lake extraction results in terms of both quantitative and visual aspects. The experiments prove that our approach provides a promising way to break through the limitations of median-low resolution remote sensing images in lake change monitoring, and ultimately support finer lake applications.


2019 ◽  
Vol 150 ◽  
pp. 197-212 ◽  
Author(s):  
Zhiwei Li ◽  
Huanfeng Shen ◽  
Qing Cheng ◽  
Yuhao Liu ◽  
Shucheng You ◽  
...  

Author(s):  
F. Wen ◽  
Y. Zhang ◽  
B. Zhang

Abstract. Cloud detection is a vital preprocessing step for remote sensing image applications, which has been widely studied through Convolutional Neural Networks (CNNs) in recent years. However, the available CNN-based works only extract local/non-local features by stacked convolution and pooling layers, ignoring global contextual information of the input scenes. In this paper, a novel segmentation-based network is proposed for cloud detection of remote sensing images. We add a multi-class classification branch to a U-shaped semantic segmentation network. Through the encoder-decoder architecture, pixelwise classification of cloud, shadow and landcover can be obtained. Besides, the multi-class classification branch is built on top of the encoder module to extract global context by identifying what classes exist in the input scene. Linear representation encoded global contextual information is learned in the added branch, which is to be combined with featuremaps of the decoder and can help to selectively strengthen class-related features or weaken class-unrelated features at different scales. The whole network is trained and tested in an end-to-end fashion. Experiments on two Landsat-8 cloud detection datasets show better performance than other deep learning methods, which finally achieves 90.82% overall accuracy and 0.6992 mIoU on the SPARCS dataset, demonstrating the effectiveness of the proposed framework for cloud detection in remote sensing images.


Sign in / Sign up

Export Citation Format

Share Document