Host lane detection method using semantic segmentation combined with hierarchy clustering algorithm

Author(s):  
Yikang Gao ◽  
Haiying Wang
2020 ◽  
Vol 122 (3) ◽  
pp. 1039-1053
Author(s):  
Ling Ding ◽  
Huyin Zhang ◽  
Jinsheng Xiao ◽  
Cheng Shu ◽  
Shejie Lu

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 400
Author(s):  
Sheng Lu ◽  
Zhaojie Luo ◽  
Feng Gao ◽  
Mingjie Liu ◽  
KyungHi Chang ◽  
...  

Lane detection is a significant technology for autonomous driving. In recent years, a number of lane detection methods have been proposed. However, the performance of fast and slim methods is not satisfactory in sophisticated scenarios and some robust methods are not fast enough. Consequently, we proposed a fast and robust lane detection method by combining a semantic segmentation network and an optical flow estimation network. Specifically, the whole research was divided into three parts: lane segmentation, lane discrimination, and mapping. In terms of lane segmentation, a robust semantic segmentation network was proposed to segment key frames and a fast and slim optical flow estimation network was used to track non-key frames. In the second part, density-based spatial clustering of applications with noise (DBSCAN) was adopted to discriminate lanes. Ultimately, we proposed a mapping method to map lane pixels from pixel coordinate system to camera coordinate system and fit lane curves in the camera coordinate system that are able to provide feedback for autonomous driving. Experimental results verified that the proposed method can speed up robust semantic segmentation network by three times at most and the accuracy fell 2% at most. In the best of circumstances, the result of the lane curve verified that the feedback error was 3%.


2021 ◽  
Vol 309 ◽  
pp. 01117
Author(s):  
A. Sai Hanuman ◽  
G. Prasanna Kumar

Studies on lane detection Lane identification methods, integration, and evaluation strategies square measure all examined. The system integration approaches for building a lot of strong detection systems are then evaluated and analyzed, taking into account the inherent limits of camera-based lane detecting systems. Present deep learning approaches to lane detection are inherently CNN's semantic segmentation network the results of the segmentation of the roadways and the segmentation of the lane markers are fused using a fusion method. By manipulating a huge number of frames from a continuous driving environment, we examine lane detection, and we propose a hybrid deep architecture that combines the convolution neural network (CNN) and the continuous neural network (CNN) (RNN). Because of the extensive information background and the high cost of camera equipment, a substantial number of existing results concentrate on vision-based lane recognition systems. Extensive tests on two large-scale datasets show that the planned technique outperforms rivals' lane detection strategies, particularly in challenging settings. A CNN block in particular isolates information from each frame before sending the CNN choices of several continuous frames with time-series qualities to the RNN block for feature learning and lane prediction.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hongchun Qu ◽  
Libiao Lei ◽  
Xiaoming Tang ◽  
Ping Wang

For resource-constrained wireless sensor networks (WSNs), designing a lightweight intrusion detection technology has been a hot and difficult issue. In this paper, we proposed a lightweight intrusion detection method that was able to directly map the network status into sensor monitoring data received by base station, so that base station can sense the abnormal changes in the network. Our method is highlighted by the fusion of fuzzy c-means algorithm, one-class SVM, and sliding window procedure to effectively differentiate network attacks from abnormal data. Finally, the proposed method was tested on the wireless sensor network simulation software EXata and in real applications. The results showed that the intrusion detection method in this paper could effectively identify whether the abnormal data came from a network attack or just a noise. In addition, extra energy consumption can be avoided in all sensor monitoring nodes of the sensor network where our method has been deployed.


Sign in / Sign up

Export Citation Format

Share Document