Deep CNN jointing low-high level feature for image super-resolution

Author(s):  
Xuhui Song ◽  
Weirong Liu ◽  
Jie Liu ◽  
Chaorong Liu ◽  
Chunyan Lu ◽  
...  
Author(s):  
A. Valli Bhasha ◽  
B. D. Venkatramana Reddy

The image super-resolution methods with deep learning using Convolutional Neural Network (CNN) have been producing admirable advancements. The proposed image resolution model involves the following two main analyses: (i) analysis using Adaptive Discrete Wavelet Transform (ADWT) with Deep CNN and (ii) analysis using Non-negative Structured Sparse Representation (NSSR). The technique termed as NSSR is used to recover the high-resolution (HR) images from the low-resolution (LR) images. The experimental evaluation involves two phases: Training and Testing. In the training phase, the information regarding the residual images of the dataset are trained using the optimized Deep CNN. On the other hand, the testing phase helps to generate the super resolution image using the HR wavelet subbands (HRSB) and residual images. As the main novelty, the filter coefficients of DWT are optimized by the hybrid Fire Fly-based Spotted Hyena Optimization (FF-SHO) to develop ADWT. Finally, a valuable performance evaluation on the two benchmark hyperspectral image datasets confirms the effectiveness of the proposed model over the existing algorithms.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Valli Bhasha A. ◽  
Venkatramana Reddy B.D.

Purpose The problems of Super resolution are broadly discussed in diverse fields. Rather than the progression toward the super resolution models for real-time images, operating hyperspectral images still remains a challenging problem. Design/methodology/approach This paper aims to develop the enhanced image super-resolution model using “optimized Non-negative Structured Sparse Representation (NSSR), Adaptive Discrete Wavelet Transform (ADWT), and Optimized Deep Convolutional Neural Network”. Once after converting the HR images into LR images, the NSSR images are generated by the optimized NSSR. Then the ADWT is used for generating the subbands of both NSSR and HRSB images. The residual image with this information is obtained by the optimized Deep CNN. All the improvements on the algorithms are done by the Opposition-based Barnacles Mating Optimization (O-BMO), with the objective of attaining the multi-objective function concerning the “Peak Signal-to-Noise Ratio (PSNR), and Structural similarity (SSIM) index”. Extensive analysis on benchmark hyperspectral image datasets shows that the proposed model achieves superior performance over typical other existing super-resolution models. Findings From the analysis, the overall analysis of the suggested and the conventional super resolution models relies that the PSNR of the improved O-BMO-(NSSR+DWT+CNN) was 38.8% better than bicubic, 11% better than NSSR, 16.7% better than DWT+CNN, 1.3% better than NSSR+DWT+CNN, and 0.5% better than NSSR+FF-SHO-(DWT+CNN). Hence, it has been confirmed that the developed O-BMO-(NSSR+DWT+CNN) is performing well in converting LR images to HR images. Originality/value This paper adopts a latest optimization algorithm called O-BMO with optimized Non-negative Structured Sparse Representation (NSSR), Adaptive Discrete Wavelet Transform (ADWT) and Optimized Deep Convolutional Neural Network for developing the enhanced image super-resolution model. This is the first work that uses O-BMO-based Deep CNN for image super-resolution model enhancement.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1979
Author(s):  
Wazir Muhammad ◽  
Zuhaibuddin Bhutto ◽  
Arslan Ansari ◽  
Mudasar Latif Memon ◽  
Ramesh Kumar ◽  
...  

Recent research on single-image super-resolution (SISR) using deep convolutional neural networks has made a breakthrough and achieved tremendous performance. Despite their significant progress, numerous convolutional neural networks (CNN) are limited in practical applications, owing to the requirement of the heavy computational cost of the model. This paper proposes a multi-path network for SISR, known as multi-path deep CNN with residual inception network for single image super-resolution. In detail, a residual/ResNet block with an Inception block supports the main framework of the entire network architecture. In addition, remove the batch normalization layer from the residual network (ResNet) block and max-pooling layer from the Inception block to further reduce the number of parameters to preventing the over-fitting problem during the training. Moreover, a conventional rectified linear unit (ReLU) is replaced with Leaky ReLU activation function to speed up the training process. Specifically, we propose a novel two upscale module, which adopts three paths to upscale the features by jointly using deconvolution and upsampling layers, instead of using single deconvolution layer or upsampling layer alone. The extensive experimental results on image super-resolution (SR) using five publicly available test datasets, which show that the proposed model not only attains the higher score of peak signal-to-noise ratio/structural similarity index matrix (PSNR/SSIM) but also enables faster and more efficient calculations against the existing image SR methods. For instance, we improved our method in terms of overall PSNR on the SET5 dataset with challenging upscale factor 8× as 1.88 dB over the baseline bicubic method and reduced computational cost in terms of number of parameters 62% by deeply-recursive convolutional neural network (DRCN) method.


Author(s):  
A. Valli Bhasha ◽  
B. D. Venkatramana Reddy

Diverse image super-resolution (SR) techniques have been implemented to reconstruct the high-resolution (HR) images from input images through lower spatial resolutions. However, the evaluation of the perceptual quality of SR images remains an important and complex research problem. This paper proposes a new image SR model with the intention of attaining maximum Peak Signal-to-Noise Ratio (PSNR). The conversion of low-resolution (LR) images from the HR images is performed by bicubic interpolation-based downsampling and upsampling. Then, the four sub-bands of LR and HR images are generated by the novel Adaptive Wavelet Lifting approach, in which the filter modes are optimized using the proposed SA-CBO. From this technique, LR wavelet sub-bands (LRSB) for LR images and HR wavelet sub-bands (HRSB) for HR images are formed. With the help of the LRSB and HRSB images, the residual images are formed by the adoption of the optimized Activation function and optimized hidden neurons in a deep convolutional neural network (CNN). The improvement in both the adaptive wavelet lifting approach and deep CNN is made by the self-adaptive-colliding bodies optimization (SA-CBO). Finally, the inverse adaptive wavelet lifting approach is used to produce the final SR image. Experimental results on publicly available SR image quality databases confirm the effectiveness and generalization ability of the proposed method compared with the traditional image quality assessment algorithms.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2064
Author(s):  
Chunmei Fu ◽  
Yong Yin

Significant progress has been made in single image super-resolution (SISR) based on deep convolutional neural networks (CNNs). The attention mechanism can capture important features well, and the feedback mechanism can realize the fine-tuning of the output to the input. However, they have not been reasonably applied in the existing deep learning-based SISR methods. Additionally, the results of the existing methods still have serious artifacts and edge blurring. To address these issues, we proposed an Edge-enhanced with Feedback Attention Network for image super-resolution (EFANSR), which comprises three parts. The first part is an SR reconstruction network, which adaptively learns the features of different inputs by integrating channel attention and spatial attention blocks to achieve full utilization of the features. We also introduced feedback mechanism to feed high-level information back to the input and fine-tune the input in the dense spatial and channel attention block. The second part is the edge enhancement network, which obtains a sharp edge through adaptive edge enhancement processing on the output of the first SR network. The final part merges the outputs of the first two parts to obtain the final edge-enhanced SR image. Experimental results show that our method achieves performance comparable to the state-of-the-art methods with lower complexity.


Author(s):  
Feng Li ◽  
Runmin Cong ◽  
Huihui Bai ◽  
Yifan He

Recently, Convolutional Neural Networks (CNN) based image super-resolution (SR) have shown significant success in the literature. However, these methods are implemented as single-path stream to enrich feature maps from the input for the final prediction, which fail to fully incorporate former low-level features into later high-level features. In this paper, to tackle this problem, we propose a deep interleaved network (DIN) to learn how information at different states should be combined for image SR where shallow information guides deep representative features prediction. Our DIN follows a multi-branch pattern allowing multiple interconnected branches to interleave and fuse at different states. Besides, the asymmetric co-attention (AsyCA) is proposed and attacked to the interleaved nodes to adaptively emphasize informative features from different states and improve the discriminative ability of networks. Extensive experiments demonstrate the superiority of our proposed DIN in comparison with the state-of-the-art SR methods.


Sign in / Sign up

Export Citation Format

Share Document