Controlling EPR correlations via a coherent signal injection

Author(s):  
Jingyan Li ◽  
Qingping Hu ◽  
Yanqin Ren ◽  
Qing Ye
2018 ◽  
Author(s):  
Zhi Jie Lau ◽  
Chris Philips

Abstract Thermal-Laser Signal Injection Microscopy (T-LSIM) is a widely used fault isolation technique. Although there are several T-LSIM systems on the market, each is limited in terms of the voltage and current it can produce. In this paper, the authors explain how they incorporated an Amplified External Isolated Source-Sense (AxISS) unit into their T-LSIM platform, increasing its current sourcing capability and voltage biasing range. They also provide examples highlighting the types of faults and failures that the modified system can detect.


Author(s):  
Binh Nguyen

Abstract For those attempting fault isolation on computer motherboard power-ground short issues, the optimal technique should utilize existing test equipment available in the debug facility, requiring no specialty equipment as well as needing a minimum of training to use effectively. The test apparatus should be both easy to set up and easy to use. This article describes the signal injection and oscilloscope technique which meets the above requirements. The signal injection and oscilloscope technique is based on the application of Ohm's law in a short-circuit condition. Two experiments were conducted to prove the effectiveness of these techniques. Both experiments simulate a short-circuit condition on the VCC3 power rail of a good working PC motherboard and then apply the signal injection and oscilloscope technique to localize the short. The technique described is a simple, low cost and non-destructive method that helps to find the location of the power-ground short quickly and effectively.


Author(s):  
Sarven Ipek ◽  
David Grosjean

Abstract The application of an individual failure analysis technique rarely provides the failure mechanism. More typically, the results of numerous techniques need to be combined and considered to locate and verify the correct failure mechanism. This paper describes a particular case in which different microscopy techniques (photon emission, laser signal injection, and current imaging) gave clues to the problem, which then needed to be combined with manual probing and a thorough understanding of the circuit to locate the defect. By combining probing of that circuit block with the mapping and emission results, the authors were able to understand the photon emission spots and the laser signal injection microscopy (LSIM) signatures to be effects of the defect. It also helped them narrow down the search for the defect so that LSIM on a small part of the circuit could lead to the actual defect.


Sign in / Sign up

Export Citation Format

Share Document