relaxation oscillators
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 26)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Takehiro Ito ◽  
Keiji Konishi ◽  
Toru Sano ◽  
Hisaya Wakayama ◽  
Masatsugu Ogawa

2021 ◽  
Vol 15 ◽  
Author(s):  
Corentin Delacour ◽  
Aida Todri-Sanial

Oscillatory Neural Network (ONN) is an emerging neuromorphic architecture with oscillators representing neurons and information encoded in oscillator's phase relations. In an ONN, oscillators are coupled with electrical elements to define the network's weights and achieve massive parallel computation. As the weights preserve the network functionality, mapping weights to coupling elements plays a crucial role in ONN performance. In this work, we investigate relaxation oscillators based on VO2 material, and we propose a methodology to map Hebbian coefficients to ONN coupling resistances, allowing a large-scale ONN design. We develop an analytical framework to map weight coefficients into coupling resistor values to analyze ONN architecture performance. We report on an ONN with 60 fully-connected oscillators that perform pattern recognition as a Hopfield Neural Network.


2021 ◽  
Vol 17 (3) ◽  
pp. e1008521
Author(s):  
Alberto Pérez-Cervera ◽  
Jaroslav Hlinka

The mechanisms underlying the emergence of seizures are one of the most important unresolved issues in epilepsy research. In this paper, we study how perturbations, exogenous or endogenous, may promote or delay seizure emergence. To this aim, due to the increasingly adopted view of epileptic dynamics in terms of slow-fast systems, we perform a theoretical analysis of the phase response of a generic relaxation oscillator. As relaxation oscillators are effectively bistable systems at the fast time scale, it is intuitive that perturbations of the non-seizing state with a suitable direction and amplitude may cause an immediate transition to seizure. By contrast, and perhaps less intuitively, smaller amplitude perturbations have been found to delay the spontaneous seizure initiation. By studying the isochrons of relaxation oscillators, we show that this is a generic phenomenon, with the size of such delay depending on the slow flow component. Therefore, depending on perturbation amplitudes, frequency and timing, a train of perturbations causes an occurrence increase, decrease or complete suppression of seizures. This dependence lends itself to analysis and mechanistic understanding through methods outlined in this paper. We illustrate this methodology by computing the isochrons, phase response curves and the response to perturbations in several epileptic models possessing different slow vector fields. While our theoretical results are applicable to any planar relaxation oscillator, in the motivating context of epilepsy they elucidate mechanisms of triggering and abating seizures, thus suggesting stimulation strategies with effects ranging from mere delaying to full suppression of seizures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaykumar Vaidya ◽  
Mohammad Khairul Bashar ◽  
Nikhil Shukla

AbstractNoise is expected to play an important role in the dynamics of analog systems such as coupled oscillators which have recently been explored as a hardware platform for application in computing. In this work, we experimentally investigate the effect of noise on the synchronization of relaxation oscillators and their computational properties. Specifically, in contrast to its typically expected adverse effect, we first demonstrate that a common white noise input induces frequency locking among uncoupled oscillators. Experiments show that the minimum noise voltage required to induce frequency locking increases linearly with the amplitude of the oscillator output whereas it decreases with increasing number of oscillators. Further, our work reveals that in a coupled system of oscillators—relevant to solving computational problems such as graph coloring, the injection of white noise helps reduce the minimum required capacitive coupling strength. With the injection of noise, the coupled system demonstrates frequency locking along with the desired phase-based computational properties at 5 × lower coupling strength than that required when no external noise is introduced. Consequently, this can reduce the footprint of the coupling element and the corresponding area-intensive coupling architecture. Our work shows that noise can be utilized as an effective knob to optimize the implementation of coupled oscillator-based computing platforms.


Author(s):  
Yuki Ikiri ◽  
Fumiya Sako ◽  
Masaki Hashizume ◽  
Hiroyuki Yotsuyanagi ◽  
Shyue-Kung Lu ◽  
...  

2020 ◽  
Author(s):  
Alberto Pérez-Cervera ◽  
Jaroslav Hlinka

AbstractThe mechanism underlying the emergence of seizures is one of the most important unresolved issues in epilepsy research. In this paper, we study how perturbations, exogenous of endogenous, may promote or delay seizure emergence. To this aim, due to the increasingly adopted view of epileptic dynamics in terms of slow-fast systems, we perform a theoretical analysis of the phase response of a generic relaxation oscillator. As relaxation oscillators are effectively bistable systems at the fast time scale, it is intuitive that perturbations of the non-seizing state with a suitable direction and amplitude may cause an immediate transition to seizure. By contrast, and perhaps less intuitively, smaller amplitude perturbations have been found to delay the spontaneous seizure initiation. By studying the isochrons of relaxation oscillators, we show that this is a generic phenomenon, with the size of such delay depending on the slow flow component. Therefore, depending on perturbation amplitudes, frequency and timing, a train of perturbations causes an occurrence increase, decrease or complete suppression of seizures. This dependence lends itself to analysis and mechanistic understanding through methods outlined in this paper. We illustrate this methodology by computing the isochrons, phase response curves and the response to perturbations in several epileptic models possessing different slow vector fields. While our theoretical results are applicable to any planar relaxation oscillator, in the motivating context of epilepsy they elucidate mechanisms of triggering and abating seizures, thus suggesting stimulation strategies with effects ranging from mere delaying to full suppression of seizures.Author summaryDespite its simplicity, the modelling of epileptic dynamics as a slow-fast transition between low and high activity states mediated by some slow feedback variable is a relatively novel albeit fruitful approach. This study is the first, to our knowledge, characterizing the response of such slow-fast models of epileptic brain to perturbations by computing its isochrons. Besides its numerical computation, we theoretically determine which factors shape the geometry of isochrons for planar slow-fast oscillators. As a consequence, we introduce a theoretical approach providing a clear understanding of the response of perturbations of slow-fast oscillators. Within the epilepsy context, this elucidates the origin of the contradictory role of interictal epileptiform discharges in the transition to seizure, manifested by both pro-convulsive and anti-convulsive effect depending on the amplitude, frequency and timing. More generally, this paper provides theoretical framework highlighting the role of the of the slow flow component on the response to perturbations in relaxation oscillators, pointing to the general phenomena in such slow-fast oscillators ubiquitous in biological systems.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Animesh Biswas ◽  
Sudhanshu Shekhar Chaurasia ◽  
P. Parmananda ◽  
Sudeshna Sinha

Abstract We explore the dynamics of a group of unconnected chaotic relaxation oscillators realized by mercury beating heart systems, coupled to a markedly different common external chaotic system realized by an electronic circuit. Counter-intuitively, we find that this single dissimilar chaotic oscillator manages to effectively steer the group of oscillators on to steady states, when the coupling is sufficiently strong. We further verify this unusual observation in numerical simulations of model relaxation oscillator systems mimicking this interaction through coupled differential equations. Interestingly, the ensemble of oscillators is suppressed most efficiently when coupled to a completely dissimilar chaotic external system, rather than to a regular external system or an external system identical to those of the group. So this experimentally demonstrable controllability of groups of oscillators via a distinct external system indicates a potent control strategy. It also illustrates the general principle that symmetry in the emergent dynamics may arise from asymmetry in the constituent systems, suggesting that diversity or heterogeneity may have a crucial role in aiding regularity in interactive systems.


Sign in / Sign up

Export Citation Format

Share Document