Clinical application of fluorescence in the operating room (Conference Presentation)

Author(s):  
Eben L. Rosenthal
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bo Lin ◽  
Wei Huang

This paper uses cloud computing to build and design remote clinical care technology, and the study refines the evaluation approach for the elements and builds an evaluation prototype for the strategy, uses service design theory to improve the design of the service part of the assistive system, summarizes the list of requirements based on system design and service design, and designs a service design prototype. Through design practice, the detailed design of the software interaction interface and the auxiliary product of the care assistance system based on the prototype are investigated. Based on the user perspective, the strategy of meeting user expectations and improving user information literacy is proposed; based on the social network perspective, the strategy of establishing a long-term mechanism for smart medical operation and improving the information interaction network environment is proposed; and based on the system service perspective, the strategy of optimizing the system function design and innovating the service model is proposed. Compared with the traditional written patient handover, the application of MNIS under cloud computing can significantly shorten the handover time of surgical patients, improve the standardized rate of surgical safety verification execution and the qualified rate of nursing documents, while the rate of standardized application of prophylactic antibiotics is also significantly higher than that of the control group. The questionnaire survey of nursing staff in the operating room showed that clinical nursing staff was generally satisfied with the clinical application of MNIS under cloud computing, with an average satisfaction score of 64.5 to 11.3, and an average score of 3.58 to 0.54 for each item. Among them, pre-application training of MNIS, departmental support for MNIS, and its ease of verification in surgical patients were the three main factors favoring the clinical application of MNIS in the operating room with cloud computing, while barriers to wireless network connectivity, inconvenient PDA input, and small screen size were the three main drawbacks affecting its application. The determined clinical evaluation index system of MNIS in the operating room is innovative, which not only includes clinical care indicators but also covers general hardware and software indicators, which can effectively reflect the practical application capability of mobile terminal clinical and user experience feelings, and the evaluation index system is comprehensive.


JAMA ◽  
1966 ◽  
Vol 195 (3) ◽  
pp. 161-166 ◽  
Author(s):  
B. L. Segal

Author(s):  
J. D. Shelburne ◽  
Peter Ingram ◽  
Victor L. Roggli ◽  
Ann LeFurgey

At present most medical microprobe analysis is conducted on insoluble particulates such as asbestos fibers in lung tissue. Cryotechniques are not necessary for this type of specimen. Insoluble particulates can be processed conventionally. Nevertheless, it is important to emphasize that conventional processing is unacceptable for specimens in which electrolyte distributions in tissues are sought. It is necessary to flash-freeze in order to preserve the integrity of electrolyte distributions at the subcellular and cellular level. Ideally, biopsies should be flash-frozen in the operating room rather than being frozen several minutes later in a histology laboratory. Electrolytes will move during such a long delay. While flammable cryogens such as propane obviously cannot be used in an operating room, liquid nitrogen-cooled slam-freezing devices or guns may be permitted, and are the best way to achieve an artifact-free, accurate tissue sample which truly reflects the in vivo state. Unfortunately, the importance of cryofixation is often not understood. Investigators bring tissue samples fixed in glutaraldehyde to a microprobe laboratory with a request for microprobe analysis for electrolytes.


2007 ◽  
Vol 177 (4S) ◽  
pp. 590-590
Author(s):  
Thomas J. Polascik ◽  
Vladimir Mouraviev ◽  
Janice M. Mayes ◽  
Leon Sun ◽  
John Madden ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document