Automatic construction of Markov decision process models for multi-agent reinforcement learning

Author(s):  
Darrell L. Young ◽  
Chris Eccles
2010 ◽  
Vol 44-47 ◽  
pp. 3611-3615 ◽  
Author(s):  
Zhi Cong Zhang ◽  
Kai Shun Hu ◽  
Hui Yu Huang ◽  
Shuai Li ◽  
Shao Yong Zhao

Reinforcement learning (RL) is a state or action value based machine learning method which approximately solves large-scale Markov Decision Process (MDP) or Semi-Markov Decision Process (SMDP). A multi-step RL algorithm called Sarsa(,k) is proposed, which is a compromised variation of Sarsa and Sarsa(). It is equivalent to Sarsa if k is 1 and is equivalent to Sarsa() if k is infinite. Sarsa(,k) adjust its performance by setting k value. Two forms of Sarsa(,k), forward view Sarsa(,k) and backward view Sarsa(,k), are constructed and proved equivalent in off-line updating.


2017 ◽  
Vol 47 (6) ◽  
pp. 800-807 ◽  
Author(s):  
Joseph Buongiorno ◽  
Mo Zhou ◽  
Craig Johnston

Markov decision process models were extended to reflect some consequences of the risk attitude of forestry decision makers. One approach consisted of maximizing the expected value of a criterion subject to an upper bound on the variance or, symmetrically, minimizing the variance subject to a lower bound on the expected value. The other method used the certainty equivalent criterion, a weighted average of the expected value and variance. The two approaches were applied to data for mixed softwood–hardwood forests in the southern United States with multiple financial and ecological criteria. Compared with risk neutrality or risk seeking, financial risk aversion reduced expected annual financial returns and production and led to shorter cutting cycles that lowered the expected diversity of tree species and size, stand basal area, stored CO2e, and old-growth area.


Author(s):  
Madison Clark-Turner ◽  
Christopher Amato

The decentralized partially observable Markov decision process (Dec-POMDP) is a powerful model for representing multi-agent problems with decentralized behavior. Unfortunately, current Dec-POMDP solution methods cannot solve problems with continuous observations, which are common in many real-world domains. To that end, we present a framework for representing and generating Dec-POMDP policies that explicitly include continuous observations. We apply our algorithm to a novel tagging problem and an extended version of a common benchmark, where it generates policies that meet or exceed the values of equivalent discretized domains without the need for finding an adequate discretization.


Author(s):  
John Aslanides ◽  
Jan Leike ◽  
Marcus Hutter

Many state-of-the-art reinforcement learning (RL) algorithms typically assume that the environment is an ergodic Markov Decision Process (MDP). In contrast, the field of universal reinforcement learning (URL) is concerned with algorithms that make as few assumptions as possible about the environment. The universal Bayesian agent AIXI and a family of related URL algorithms have been developed in this setting. While numerous theoretical optimality results have been proven for these agents, there has been no empirical investigation of their behavior to date. We present a short and accessible survey of these URL algorithms under a unified notation and framework, along with results of some experiments that qualitatively illustrate some properties of the resulting policies, and their relative performance on partially-observable gridworld environments. We also present an open- source reference implementation of the algorithms which we hope will facilitate further understanding of, and experimentation with, these ideas.


Sign in / Sign up

Export Citation Format

Share Document