Photonic true-time-delays based on multiplexed substrate-guided wave propagation for phased array antenna applications

Author(s):  
Ray T. Chen ◽  
Richard L. Li
2011 ◽  
Vol 368-373 ◽  
pp. 1667-1671
Author(s):  
Yu Zhang ◽  
Long Yu ◽  
Yun Ju Yan ◽  
Yu Guo

Over decades phased array antenna technique attracts much more attention in Lamb wave based structural damage detection. Lamb wave generated by the piezoelectric wafers omnidirectionally could be steered at a specific direction during its propagation. Thus, the wave beam steering and focusing has been established, the location of structural damage is done with pulse-echo method by wave propagation. However, the detection accuracy will decrease as side bands energy leakage during wave propagation, so, signals to be generated have to be modified by window tone burst in order to concentrate energy in main bands and minimize the effect of dispersion side bands. In this paper, signals modified by Hanning-windowed tone burst was used to decrease the effect of side bands energy leakage, the results improved the detection accuracy better than signals without window tone burst and show good agreement with theoretical results. Meanwhile, A numerical simulation of aluminium plate demonstrates that phased array antenna technique is feasible in structural damage detection.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 863
Author(s):  
Mahmuda Akter Monne ◽  
Peter Mack Grubb ◽  
Harold Stern ◽  
Harish Subbaraman ◽  
Ray T. Chen ◽  
...  

Low-cost and conformal phased array antennas (PAAs) on flexible substrates are of particular interest in many applications. The major deterrents to developing flexible PAA systems are the difficulty in integrating antenna and electronics circuits on the flexible surface, as well as the bendability and oxidation rate of radiating elements and electronics circuits. In this research, graphene ink was developed from graphene flakes and used to inkjet print the radiating element and the active channel of field effect transistors (FETs). Bending and oxidation tests were carried out to validate the application of printed flexible graphene thin films in flexible electronics. An inkjet-printed graphene-based 1 × 2 element phased array antenna was designed and fabricated. Graphene-based field effect transistors were used as switches in the true-time delay line of the phased array antenna. The graphene phased array antenna was 100% inkjet printed on top of a 5 mil flexible Kapton® substrate, at room temperature. Four possible azimuth steering angles were designed for −26.7°, 0°, 13°, and 42.4°. Measured far-field patterns show good agreement with simulation results.


Sign in / Sign up

Export Citation Format

Share Document