guided wave propagation
Recently Published Documents


TOTAL DOCUMENTS

324
(FIVE YEARS 62)

H-INDEX

29
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Shuisheng Yu ◽  
Wancheng Zhu ◽  
Leilei Niu

Abstract The axial loading in rockbolts changes due to stress redistribution and rheology in the country rock mass. Such a change may lead to debonding at rockbolt to grout interface or rupture of the rockbolt. In this study, based on laboratory experiments, ultrasonic guided wave propagation in fully grouted rockbolt under different pull-out loads was investigated in order to examine the resultant debonding of rockbolt. The signals obtained from the ultrasonic monitoring during the pull-out test were processed using wavelet multi-scale analysis and frequency spectrum analysis, the signal amplitude and the amplitude ratio (Q) of low frequency to high frequency were defined to quantify the debonding of rockbolt. In addition to the laboratory test, numerical simulation on the effect of the embedment lengths on ultrasonic guided wave propagation in rockbolt was conducted by using a damage-based model, and the debonding between rockbolt and cement mortar was numerically examined. It was confirmed that the ultrasonic guided wave propagation in rockbolt was very sensitive to the debonding because of pull-out load, therefore, the critical bond length could be calculated based on the propagation of guided wave in the grouted rockbolt. In time domain, the signal amplitude in rockbolt increased with pull-out load from 0 kN to 100 kN until the completely debonding, thus quantifying the debonding under the different pull-out loads. In the frequency domain, as the Q value increased, the debonding length of rockbolt decreased exponentially. The numerical results confirmed that the guided wave propagation in the fully grouted rockbolt was effective in detecting and quantifying the debonding of rockbolt under pull-out load.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5672
Author(s):  
Shabbir Ahmed ◽  
Fotis Kopsaftopoulos

In the context of active-sensing guided-wave-based acousto-ultrasound structural health monitoring, environmental and operational variability poses a considerable challenge in the damage diagnosis process as they may mask the presence of damage. In this work, the stochastic nature of guided wave propagation due to the small temperature variation, naturally occurring in the ambient or environment, is rigorously investigated and modeled with the help of stochastic time-varying time series models, for the first time, with a system identification point of view. More specifically, the output-only recursive maximum likelihood time-varying auto-regressive model (RML-TAR) is employed to investigate the uncertainty in guided wave propagation by analyzing the time-varying model parameters. The steps and facets of the identification procedure are presented, and the obtained model is used for modeling the uncertainty of the time-varying model parameters that capture the underlying dynamics of the guided waves. The stochasticity inherent in the modal properties of the system, such as natural frequencies and damping ratios, is also analyzed with the help of the identified RML-TAR model. It is stressed that the narrow-band high-frequency actuation for guided wave propagation excites more than one frequency in the system. The values and the time evolution of those frequencies are analyzed, and the associated uncertainties are also investigated. In addition, a high-fidelity finite element (FE) model was established and Monte Carlo simulations on that FE model were carried out to understand the effect of small temperature perturbation on guided wave signals.


Sign in / Sign up

Export Citation Format

Share Document