One-dimensional Fourier transform coefficients for rotation invariant texture classification

Author(s):  
Hamzah Arof ◽  
Farzin Deravi

The structures of various ordered, but non-periodic, systems have been investigated and exhibit features which can be directly described by means of a construction which the authors call the shift lattice , which is a simple generalization of the concept of the lattice. This paper is devoted to a description of the properties of the one-dimensional shift lattice and its Fourier transform. Its applications to the phases related to L–Ta 2 O 5 and some Bi 2 TeO 5 -related systems are outlined and its relation to the theory of modulated structures and their Fourier transforms is briefly discussed.


Author(s):  
Denis Borisovich Fedosenkov ◽  
Anna Alekseevna Simikova ◽  
Boris Andreevich Fedosenkov ◽  
Stanislav Matveevich Kulakov

The article describes the development of a special approach based on using multidimensional wavelet distributions principle to monitor and control the feed dozing processes in the mix preparation unit. As a key component, this approach uses the multidimensional time-frequency Wigner-Ville distribution, which is the part of Cohen's class distributions. The research focuses on signals characterizing mass transfer processes in the form of material flow measuring signals in relevant points of the unit. Wigner-Ville distribution has been shown in time terms as Fourier transform of products of multiplied parts of the signal under consideration for past and future time moments; corresponding distribution for the frequency spectrum is shown as Fourier transform of the products of signal parts for high-frequency and low-frequency fragments of the signal spectrum. It has been noted that when using a complex model of a dozing signal, discrete values (samples) of the latter are considered as its real values. The description of the signal parameters (amplitude, phase, frequency) has been carried out with the help of Hilbert transform. In Cohen's class distributions which represent one-dimensional non-stationary flow signals, the concept of ‘instantaneous frequency’ has been introduced. A graphical explanation for the transformation of a process flow signal from a one-dimensional time domain to a time-frequency 2 D/ 3 D -space is presented. The technology of developing a multidimensional image in the form of Wigner distribution for one-dimensional signals of continuous spiral or screw-type feeders has been examined in detail. There have been considered the features to support Wigner distribution, which allow to guess the presence or absence of time-frequency distribution elements in the interval of signal recording. There has been demonstrated how Wigner distribution can be obtained for a continuous-intermittent feeding signal. It has been concluded that for a certain types of the signal for zero fragments of the latter, non-zero time-frequency elements (i.e. virtual, anomalous ones) appear on the distribution. In addition to Wigner distribution, two other distributions - of Rihachek and Page - are considered. They display the same signal and also contain virtual elements, but in different domains of the time-frequency space. A generalized multidimensional compound signal distribution with a so-called distribution kernel available in it is presented, which includes a correction parameter that allows controlling the intensity of the virtual signal energy.


2016 ◽  
Vol 72 (8) ◽  
pp. 1214-1218 ◽  
Author(s):  
Montserrat Alfonso ◽  
Helen Stoeckli-Evans

The isotypic title one-dimensional coordination polymers, [CdCl2(C18H14N4O4)]n, (I), and [HgCl2(C18H14N4O4)]n, (II), are, respectively, the cadmium(II) and mercury(II) complexes of the dimethyl ester of 5,6-bis(pyridin-2-yl)pyrazine-2,3-dicarboxylic acid. In both compounds, the metal ions are located on a twofold rotation axis and a second such axis bisects the Car—Carbonds of the pyrazine ring. The metal ions are bridged by binding to the N atoms of the two pyridine rings and have anMN2Cl2bisphenoidal coordination geometry. The metal–Npyrazinedistances are much longer than the metal–Npyridinedistances; the difference is 0.389 (2) Å for the Cd—N bonds but only 0.286 (5) Å for the Hg—N bond lengths. In the crystals of both compounds, the polymer chains are linkedviapairs of C—H...Cl hydrogen bonds, forming corrugated slabs parallel to theacplane.


Sign in / Sign up

Export Citation Format

Share Document