Study of imaging performance of mouse eyes based on optical coherence tomography and ray tracing techniques

Author(s):  
Rui Qiu ◽  
ChunFeng Guo ◽  
Rui Ming Kong ◽  
Lei Gao ◽  
FengXian Du ◽  
...  
2020 ◽  
Vol 10 (10) ◽  
pp. 3657
Author(s):  
Seung Seok Lee ◽  
Woosub Song ◽  
Eun Seo Choi

We designed and fabricated a telecentric f-theta imaging lens (TFL) to improve the imaging performance of spectral domain optical coherence tomography (SD-OCT). By tailoring the field curvature aberration of the TFL, the flattened focal surface was well matched to the detector plane. Simulation results showed that the spot in the focal plane fitted well within a single pixel and the modulation transfer function at high spatial frequencies showed higher values compared with those of an achromatic doublet imaging lens, which are commonly used in SD-OCT spectrometers. The spectrometer using the TFL had an axial resolution of 7.8 μm, which was similar to the theoretical value of 6.2 μm. The spectrometer was constructed so that the achromatic doublet lens was replaced by the TFL. As a result, the SD-OCT imaging depth was improved by 13% (1.85 mm) on a 10 dB basis in the roll-off curve and showed better sensitivity at the same depth. The SD-OCT images of a multi-layered tape and a human palm proved that the TFL was able to achieve deeper imaging depth and better contrast. This feature was seen very clearly in the depth profile of the image. SD-OCT imaging performance can be improved simply by changing the spectrometer’s imaging lens. By optimizing the imaging lens, deeper SD-OCT imaging can be achieved with improved sensitivity.


2021 ◽  
Vol 11 (22) ◽  
pp. 11025
Author(s):  
Ramadhan Hardani Putra ◽  
Nobuhiro Yoda ◽  
Eha Renwi Astuti ◽  
Keiichi Sasaki

Optical coherence tomography (OCT) has been emerging in the dental field as an alternative diagnostic imaging for “optical probes” owing to its micro-meter resolution and non-invasiveness. This review aims to answer the following question: what is the imaging capability of OCT to visualize the subgingival area? Online searches were performed on PubMed and SPIE digital library databases, followed by a manual screening of references listed in relevant studies. The feasibility and imaging performance of OCT to visualize the subgingival area, including the periodontal, peri-implant, and crown margins, are discussed. All of the literature reviewed in this study demonstrated that OCT has the ability to visualize periodontal, including hard and soft tissues, and peri-implant conditions with high resolution. Gingival sulcus depth, periodontal pocket, and calculus deposition can also be depicted. However, clinical evidence that support the imaging capability of OCT as a dental optical probe to visualize subgingival area is lacking. Limited availability, portability, and usability of OCT for clinical experiments in dentistry, particularly for the subgingival area, might be contributed to its limitations. Hence, further development of handheld OCT systems and controlled clinical trials are needed to confirm the imaging capability of OCT reported in this review.


2007 ◽  
Vol 177 (4S) ◽  
pp. 358-359 ◽  
Author(s):  
Christopher S. Lee ◽  
Alek Mishail ◽  
Jason M. Kim ◽  
Alexander Kirshenbaum ◽  
Howard L. Adler ◽  
...  

2006 ◽  
Vol 175 (4S) ◽  
pp. 395-395
Author(s):  
Nancy J. Tresser ◽  
Elena V. Zagaynova ◽  
Olga S. Streltsova ◽  
Natalia D. Gladkova ◽  
Vladislav A. Kamensky ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 68-68 ◽  
Author(s):  
Markus D. Sachs ◽  
Dmitry Daniltchenko ◽  
Eva Lankenau ◽  
Frank Koenig ◽  
Gerion Huettmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document