Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans

Author(s):  
Yeison D. Sanchez ◽  
Bernardo Nieto ◽  
Fabio D. Padilla ◽  
Oscar Perdomo ◽  
Fabio A. González
Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Juhwan Lee ◽  
Yazan Gharaibeh ◽  
Vladislav N Zimin ◽  
Luis A Dallan ◽  
Hiram G Bezerra ◽  
...  

Introduction: Major calcifications are of great concern when performing percutaneous coronary intervention as they hinder stent deployment. Calcifications can lead to under-expansion and strut malapposition, with increased risk of thrombosis and in-stent restenosis. Therefore, accurate identification, visualization, and quantification of calcifications are important. Objective: In this study, we developed a 2-step deep learning approach to enable segmentation of major calcifications in a typical 500+ frame intravascular optical coherence tomography (IVOCT) images. Methods: The dataset consisted of a total of 12,551 IVOCT frames across 68 patients with 68 pullbacks. We applied a series of pre-processing steps including guidewire/shadow removal, lumen detection, pixel shifting, and Gaussian filtering. To detect the major calcifications in step 1, we implemented the 3D convolutional neural network consisting of 5 convolutional, 5 max-pooling, and 2 fully-connected layers. In step-2, SegNet deep learning model was used to segment calcified plaques. In both steps, classification errors were reduced using conditional random field. Results: Step-1 reliably identified major calcifications (sensitivity/specificity: 97.7%/87.7%). Semantic segmentation of calcifications following step-2 was typically visually quite good (Fig. 1) with (sensitivity/specificity: 86.2%/96.7%). Our method was superior to a single step approach and showed excellent reproducibility on repetitive IVOCT pullbacks, with very small differences of clinically relevant attributes (maximum angle, maximum thickness, and length) and the exact same IVOCT calcium scores for assessment of stent deployment. Conclusions: We developed the fully-automated method for identifying calcifications in IVOCT images based on a 2-step deep learning approach. Extensive analyses indicate that our method is very informative for both live-time treatment planning and research purposes.


2019 ◽  
Vol 178 ◽  
pp. 181-189 ◽  
Author(s):  
Oscar Perdomo ◽  
Hernán Rios ◽  
Francisco J. Rodríguez ◽  
Sebastián Otálora ◽  
Fabrice Meriaudeau ◽  
...  

2020 ◽  
Vol 9 (2) ◽  
pp. 23
Author(s):  
Haris Cheong ◽  
Sripad Krishna Devalla ◽  
Tan Hung Pham ◽  
Liang Zhang ◽  
Tin Aung Tun ◽  
...  

Author(s):  
Lambros S. Athanasiou ◽  
Max L. Olender ◽  
José M. de la Torre Hernandez ◽  
Eyal Ben-Assa ◽  
Elazer R. Edelman

2018 ◽  
Vol 59 (1) ◽  
pp. 63 ◽  
Author(s):  
Sripad Krishna Devalla ◽  
Khai Sing Chin ◽  
Jean-Martial Mari ◽  
Tin A. Tun ◽  
Nicholas G. Strouthidis ◽  
...  

2018 ◽  
Vol 9 (4) ◽  
pp. 1545 ◽  
Author(s):  
Freerk G. Venhuizen ◽  
Bram van Ginneken ◽  
Bart Liefers ◽  
Freekje van Asten ◽  
Vivian Schreur ◽  
...  

2020 ◽  
pp. bjophthalmol-2020-317825
Author(s):  
Yonghao Li ◽  
Weibo Feng ◽  
Xiujuan Zhao ◽  
Bingqian Liu ◽  
Yan Zhang ◽  
...  

Background/aimsTo apply deep learning technology to develop an artificial intelligence (AI) system that can identify vision-threatening conditions in high myopia patients based on optical coherence tomography (OCT) macular images.MethodsIn this cross-sectional, prospective study, a total of 5505 qualified OCT macular images obtained from 1048 high myopia patients admitted to Zhongshan Ophthalmic Centre (ZOC) from 2012 to 2017 were selected for the development of the AI system. The independent test dataset included 412 images obtained from 91 high myopia patients recruited at ZOC from January 2019 to May 2019. We adopted the InceptionResnetV2 architecture to train four independent convolutional neural network (CNN) models to identify the following four vision-threatening conditions in high myopia: retinoschisis, macular hole, retinal detachment and pathological myopic choroidal neovascularisation. Focal Loss was used to address class imbalance, and optimal operating thresholds were determined according to the Youden Index.ResultsIn the independent test dataset, the areas under the receiver operating characteristic curves were high for all conditions (0.961 to 0.999). Our AI system achieved sensitivities equal to or even better than those of retina specialists as well as high specificities (greater than 90%). Moreover, our AI system provided a transparent and interpretable diagnosis with heatmaps.ConclusionsWe used OCT macular images for the development of CNN models to identify vision-threatening conditions in high myopia patients. Our models achieved reliable sensitivities and high specificities, comparable to those of retina specialists and may be applied for large-scale high myopia screening and patient follow-up.


Sign in / Sign up

Export Citation Format

Share Document