scholarly journals Development and validation of a deep learning system to screen vision-threatening conditions in high myopia using optical coherence tomography images

2020 ◽  
pp. bjophthalmol-2020-317825
Author(s):  
Yonghao Li ◽  
Weibo Feng ◽  
Xiujuan Zhao ◽  
Bingqian Liu ◽  
Yan Zhang ◽  
...  

Background/aimsTo apply deep learning technology to develop an artificial intelligence (AI) system that can identify vision-threatening conditions in high myopia patients based on optical coherence tomography (OCT) macular images.MethodsIn this cross-sectional, prospective study, a total of 5505 qualified OCT macular images obtained from 1048 high myopia patients admitted to Zhongshan Ophthalmic Centre (ZOC) from 2012 to 2017 were selected for the development of the AI system. The independent test dataset included 412 images obtained from 91 high myopia patients recruited at ZOC from January 2019 to May 2019. We adopted the InceptionResnetV2 architecture to train four independent convolutional neural network (CNN) models to identify the following four vision-threatening conditions in high myopia: retinoschisis, macular hole, retinal detachment and pathological myopic choroidal neovascularisation. Focal Loss was used to address class imbalance, and optimal operating thresholds were determined according to the Youden Index.ResultsIn the independent test dataset, the areas under the receiver operating characteristic curves were high for all conditions (0.961 to 0.999). Our AI system achieved sensitivities equal to or even better than those of retina specialists as well as high specificities (greater than 90%). Moreover, our AI system provided a transparent and interpretable diagnosis with heatmaps.ConclusionsWe used OCT macular images for the development of CNN models to identify vision-threatening conditions in high myopia patients. Our models achieved reliable sensitivities and high specificities, comparable to those of retina specialists and may be applied for large-scale high myopia screening and patient follow-up.

2021 ◽  
Author(s):  
Adrit Rao ◽  
Harvey A. Fishman

Identifying diseases in Optical Coherence Tomography (OCT) images using Deep Learning models and methods is emerging as a powerful technique to enhance clinical diagnosis. Identifying macular diseases in the eye at an early stage and preventing misdiagnosis is crucial. The current methods developed for OCT image analysis have not yet been integrated into an accessible form-factor that can be utilized in a real-life scenario by Ophthalmologists. Additionally, current methods do not employ robust multiple metric feedback. This paper proposes a highly accurate smartphone-based Deep Learning system, OCTAI, that allows a user to take an OCT picture and receive real-time feedback through on-device inference. OCTAI analyzes the input OCT image in three different ways: (1) full image analysis, (2) quadrant based analysis, and (3) disease detection based analysis. With these three analysis methods, along with an Ophthalmologist's interpretation, a robust diagnosis can potentially be made. The ultimate goal of OCTAI is to assist Ophthalmologists in making a diagnosis through a digital second opinion and enabling them to cross-check their diagnosis before making a decision based on purely manual analysis of OCT images. OCTAI has the potential to allow Ophthalmologists to improve their diagnosis and may reduce misdiagnosis rates, leading to faster treatment of diseases.


2021 ◽  
Author(s):  
Fangyao Tang ◽  
Xi Wang ◽  
An-ran Ran ◽  
Carmen KM Chan ◽  
Mary Ho ◽  
...  

<a><b>Objective:</b></a> Diabetic macular edema (DME) is the primary cause of vision loss among individuals with diabetes mellitus (DM). We developed, validated, and tested a deep-learning (DL) system for classifying DME using images from three common commercially available optical coherence tomography (OCT) devices. <p><b>Research Design and Methods:</b> We trained and validated two versions of a multi-task convolution neural network (CNN) to classify DME (center-involved DME [CI-DME], non-CI-DME, or absence of DME) using three-dimensional (3D) volume-scans and two-dimensional (2D) B-scans respectively. For both 3D and 2D CNNs, we employed the residual network (ResNet) as the backbone. For the 3D CNN, we used a 3D version of ResNet-34 with the last fully connected layer removed as the feature extraction module. A total of 73,746 OCT images were used for training and primary validation. External testing was performed using 26,981 images across seven independent datasets from Singapore, Hong Kong, the US, China, and Australia. </p> <p><b>Results:</b> In classifying the presence or absence of DME, the DL system achieved area under the receiver operating characteristic curves (AUROCs) of 0.937 (95% CI 0.920–0.954), 0.958 (0.930–0.977), and 0.965 (0.948–0.977) for primary dataset obtained from Cirrus, Spectralis, and Triton OCTs respectively, in addition to AUROCs greater than 0.906 for the external datasets. For the further classification of the CI-DME and non-CI-DME subgroups, the AUROCs were 0.968 (0.940–0.995), 0.951 (0.898–0.982), and 0.975 (0.947–0.991) for the primary dataset and greater than 0.894 for the external datasets. </p> <p><b>Conclusion:</b> We demonstrated excellent performance with a DL system for the automated classification of DME, highlighting its potential as a promising second-line screening tool for patients with DM, which may potentially create a more effective triaging mechanism to eye clinics. </p>


2019 ◽  
Vol 203 ◽  
pp. 37-45 ◽  
Author(s):  
Huazhu Fu ◽  
Mani Baskaran ◽  
Yanwu Xu ◽  
Stephen Lin ◽  
Damon Wing Kee Wong ◽  
...  

2020 ◽  
Vol 10 (14) ◽  
pp. 4716 ◽  
Author(s):  
Mohamed Ramzy Ibrahim ◽  
Karma M. Fathalla ◽  
Sherin M. Youssef

Optical Coherence Tomography (OCT) imaging has major advantages in effectively identifying the presence of various ocular pathologies and detecting a wide range of macular diseases. OCT examinations can aid in the detection of many retina disorders in early stages that could not be detected in traditional retina images. In this paper, a new hybrid computer-aided OCT diagnostic system (HyCAD) is proposed for classification of Diabetic Macular Edema (DME), Choroidal Neovascularization (CNV) and drusen disorders, while separating them from Normal OCT images. The proposed HyCAD hybrid learning system integrates the segmentation of Region of Interest (RoI), based on central serious chorioretinopathy (CSC) in Spectral Domain Optical Coherence Tomography (SD-OCT) images, with deep learning architectures for effective diagnosis of retinal disorders. The proposed system assimilates a range of techniques including RoI localization and feature extraction, followed by classification and diagnosis. An efficient feature fusion phase has been introduced for combining the OCT image features, extracted by Deep Convolutional Neural Network (CNN), with the features extracted from the RoI segmentation phase. This fused feature set is used to predict multiclass OCT retina disorders. The proposed segmentation phase of retinal RoI regions adds substantial contribution as it draws attention to the most significant areas that are candidate for diagnosis. A new modified deep learning architecture (Norm-VGG16) is introduced integrating a kernel regularizer. Norm-VGG16 is trained from scratch on a large benchmark dataset and used in RoI localization and segmentation. Various experiments have been carried out to illustrate the performance of the proposed system. Large Dataset of Labeled Optical Coherence Tomography (OCT) v3 benchmark is used to validate the efficiency of the model compared with others in literature. The experimental results show that the proposed model achieves relatively high-performance in terms of accuracy, sensitivity and specificity. An average accuracy, sensitivity and specificity of 98.8%, 99.4% and 98.2% is achieved, respectively. The remarkable performance achieved reflects that the fusion phase can effectively improve the identification ratio of the urgent patients’ diagnostic images and clinical data. In addition, an outstanding performance is achieved compared to others in literature.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyung Jun Choi ◽  
Jung Eun Choi ◽  
Hyeon Cheol Roh ◽  
Jun Soo Eun ◽  
Jong Min Kim ◽  
...  

AbstractThis study aimed to validate and evaluate deep learning (DL) models for screening of high myopia using spectral-domain optical coherence tomography (OCT). This retrospective cross-sectional study included 690 eyes in 492 patients with OCT images and axial length measurement. Eyes were divided into three groups based on axial length: a “normal group,” a “high myopia group,” and an “other retinal disease” group. The researchers trained and validated three DL models to classify the three groups based on horizontal and vertical OCT images of the 600 eyes. For evaluation, OCT images of 90 eyes were used. Diagnostic agreements of human doctors and DL models were analyzed. The area under the receiver operating characteristic curve of the three DL models was evaluated. Absolute agreement of retina specialists was 99.11% (range: 97.78–100%). Absolute agreement of the DL models with multiple-column model was 100.0% (ResNet 50), 90.0% (Inception V3), and 72.22% (VGG 16). Areas under the receiver operating characteristic curves of the DL models with multiple-column model were 0.99 (ResNet 50), 0.97 (Inception V3), and 0.86 (VGG 16). The DL model based on ResNet 50 showed comparable diagnostic performance with retinal specialists. The DL model using OCT images demonstrated reliable diagnostic performance to identify high myopia.


Author(s):  
Ling Wei ◽  
Wenwen He ◽  
Jinrui Wang ◽  
Keke Zhang ◽  
Yu Du ◽  
...  

BackgroundDue to complicated and variable fundus status of highly myopic eyes, their visual benefit from cataract surgery remains hard to be determined preoperatively. We therefore aimed to develop an optical coherence tomography (OCT)-based deep learning algorithms to predict the postoperative visual acuity of highly myopic eyes after cataract surgery.Materials and MethodsThe internal dataset consisted of 1,415 highly myopic eyes having cataract surgeries in our hospital. Another external dataset consisted of 161 highly myopic eyes from Heping Eye Hospital. Preoperative macular OCT images were set as the only feature. The best corrected visual acuity (BCVA) at 4 weeks after surgery was set as the ground truth. Five different deep learning algorithms, namely ResNet-18, ResNet-34, ResNet-50, ResNet-101, and Inception-v3, were used to develop the model aiming at predicting the postoperative BCVA, and an ensemble learning was further developed. The model was further evaluated in the internal and external test datasets.ResultsThe ensemble learning showed the lowest mean absolute error (MAE) of 0.1566 logMAR and the lowest root mean square error (RMSE) of 0.2433 logMAR in the validation dataset. Promising outcomes in the internal and external test datasets were revealed with MAEs of 0.1524 and 0.1602 logMAR and RMSEs of 0.2612 and 0.2020 logMAR, respectively. Considerable sensitivity and precision were achieved in the BCVA &lt; 0.30 logMAR group, with 90.32 and 75.34% in the internal test dataset and 81.75 and 89.60% in the external test dataset, respectively. The percentages of the prediction errors within ± 0.30 logMAR were 89.01% in the internal and 88.82% in the external test dataset.ConclusionPromising prediction outcomes of postoperative BCVA were achieved by the novel OCT-trained deep learning model, which will be helpful for the surgical planning of highly myopic cataract patients.


Sign in / Sign up

Export Citation Format

Share Document