Predicting particle properties in optical traps with machine learning

Author(s):  
Lachlan Hamilton ◽  
Lauren McQueen ◽  
Oscar Smee ◽  
Timo A. Nieminen ◽  
Halina Rubinsztein-Dunlop ◽  
...  
Author(s):  
K. Bobzin ◽  
W. Wietheger ◽  
H. Heinemann ◽  
S. R. Dokhanchi ◽  
M. Rom ◽  
...  

AbstractThermal spraying processes include complex nonlinear interdependencies among process parameters, in-flight particle properties and coating structure. Therefore, employing computer-aided methods is essential to quantify these complex relationships and subsequently enhance the process reproducibility. Typically, classic modeling approaches are pursued to understand these interactions. While these approaches are able to capture very complex systems, the increasingly sophisticated models have the drawback of requiring considerable calculation time. In this study, two different Machine Learning (ML) methods, Residual Neural Network (ResNet) and Support Vector Machine (SVM), were used to estimate the in-flight particle properties in plasma spraying in a much faster manner. To this end, data sets comprising the process parameters such as electrical current and gas flow as well as the in-flight particle velocities, temperatures and positions have been extracted from a CFD simulation of the plasma jet. Furthermore, two Design of Experiments (DOE) methods, Central Composite Design (CCD) and Latin Hypercube Sampling (LHS), have been employed to cover a set of representative process parameters for training the ML models. The results show that the developed ML models are able to estimate the trends of particle properties precisely and dramatically faster than the computation-intensive CFD simulations.


2017 ◽  
Vol 17 (17) ◽  
pp. 10855-10864 ◽  
Author(s):  
Sarvesh Garimella ◽  
Daniel A. Rothenberg ◽  
Martin J. Wolf ◽  
Robert O. David ◽  
Zamin A. Kanji ◽  
...  

Abstract. This study investigates the measurement of ice nucleating particle (INP) concentrations and sizing of crystals using continuous flow diffusion chambers (CFDCs). CFDCs have been deployed for decades to measure the formation of INPs under controlled humidity and temperature conditions in laboratory studies and by ambient aerosol populations. These measurements have, in turn, been used to construct parameterizations for use in models by relating the formation of ice crystals to state variables such as temperature and humidity as well as aerosol particle properties such as composition and number. We show here that assumptions of ideal instrument behavior are not supported by measurements made with a commercially available CFDC, the SPectrometer for Ice Nucleation (SPIN), and the instrument on which it is based, the Zurich Ice Nucleation Chamber (ZINC). Non-ideal instrument behavior, which is likely inherent to varying degrees in all CFDCs, is caused by exposure of particles to different humidities and/or temperatures than predicated from instrument theory of operation. This can result in a systematic, and variable, underestimation of reported INP concentrations. We find here variable correction factors from 1.5 to 9.5, consistent with previous literature values. We use a machine learning approach to show that non-ideality is most likely due to small-scale flow features where the aerosols are combined with sheath flows. Machine learning is also used to minimize the uncertainty in measured INP concentrations. We suggest that detailed measurement, on an instrument-by-instrument basis, be performed to characterize this uncertainty.


Author(s):  
Isaac C. Lenton ◽  
Giovanni Volpe ◽  
Alexander B. Stilgoe ◽  
Timo A. Nieminen ◽  
Halina Rubinsztein-Dunlop

2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  

2020 ◽  
Author(s):  
Marc Peter Deisenroth ◽  
A. Aldo Faisal ◽  
Cheng Soon Ong
Keyword(s):  

Author(s):  
Lorenza Saitta ◽  
Attilio Giordana ◽  
Antoine Cornuejols

Author(s):  
Shai Shalev-Shwartz ◽  
Shai Ben-David
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document