Terahertz emission from a single-color laser filament plasma

2021 ◽  
Author(s):  
Andrey A. Ionin ◽  
Yuri A. Mityagin ◽  
Daria V. Mokrousova ◽  
Georgii E. Rizaev ◽  
Sergey A. Savinov ◽  
...  
Author(s):  
Leonid Seleznev ◽  
Georgy Rizaev ◽  
Dmitrii Pushkarev ◽  
Andrew Koribut ◽  
Yulia GERASIMOVA ◽  
...  

2020 ◽  
Vol 59 (10) ◽  
pp. 105004
Author(s):  
Yoshihiko Saiwai ◽  
Takanari Kashiwagi ◽  
Kurama Nakade ◽  
Manabu Tsujimoto ◽  
Hidetoshi Minami ◽  
...  

2004 ◽  
Vol 70 (23) ◽  
Author(s):  
J. Lloyd-Hughes ◽  
E. Castro-Camus ◽  
M. Fraser ◽  
C. Jagadish ◽  
M. Johnston

2021 ◽  
Vol 118 (23) ◽  
pp. 232401
Author(s):  
Qi Zhang ◽  
Zhuangzhuang Chen ◽  
Huafeng Shi ◽  
Xin Chen ◽  
Abhishek Talapatra ◽  
...  

2021 ◽  
Vol 1943 (1) ◽  
pp. 012035
Author(s):  
J P Ferrolino ◽  
N I Cabello ◽  
A De Los Reyes ◽  
V K Mag-Usara ◽  
J P Afalla ◽  
...  
Keyword(s):  

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 336
Author(s):  
Atsushi Nakanishi ◽  
Shohei Hayashi ◽  
Hiroshi Satozono ◽  
Kazuue Fujita

We demonstrate spectroscopic imaging using a compact ultra-broadband terahertz semiconductor source with a high-power, mid-infrared quantum cascade laser. The electrically pumped monolithic source is based on intra-cavity difference-frequency generation and can be designed to achieve an ultra-broadband multi-mode terahertz emission spectrum extending from 1–4 THz without any external optical setup. Spectroscopic imaging was performed with three frequency bands, 2.0 THz, 2.5 THz and 3.0 THz, and as a result, this imaging technique clearly identified three different tablet components (polyethylene, D-histidine and DL-histidine). This method may be highly suitable for quality monitoring of pharmaceutical materials.


2004 ◽  
Vol 85 (17) ◽  
pp. 3660-3662 ◽  
Author(s):  
P.-C. Lv ◽  
R. T. Troeger ◽  
S. Kim ◽  
S. K. Ray ◽  
K. W. Goossen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document