Quantification of tissue blood flow and scattering coefficient by diffusion correlation spectroscopy

2021 ◽  
Author(s):  
Minnan Jiang ◽  
Zhe Li ◽  
Kebin Jia ◽  
Jie De ◽  
Jinchao Feng ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Lin Hou ◽  
Yinqiu Liu ◽  
Lixia Qian ◽  
Yucong Zheng ◽  
Jinnan Gao ◽  
...  

Tissue hemodynamics, including the blood flow, oxygenation, and oxygen metabolism, are closely associated with many diseases. As one of the portable optical technologies to explore human physiology and assist in healthcare, near-infrared diffuse optical spectroscopy (NIRS) for tissue oxygenation measurement has been developed for four decades. In recent years, a dynamic NIRS technology, namely, diffuse correlation spectroscopy (DCS), has been emerging as a portable tool for tissue blood flow measurement. In this article, we briefly describe the basic principle and algorithms for static NIRS and dynamic NIRS (i.e., DCS). Then, we elaborate on the NIRS instrumentation, either commercially available or custom-made, as well as their applications to physiological studies and clinic. The extension of NIRS/DCS from spectroscopy to imaging was depicted, followed by introductions of advanced algorithms that were recently proposed. The future prospective of the NIRS/DCS and their feasibilities for routine utilization in hospital is finally discussed.


Author(s):  
Rickson C. Mesquita ◽  
Turgut Durduran ◽  
Guoqiang Yu ◽  
Erin M. Buckley ◽  
Meeri N. Kim ◽  
...  

Diffuse optics has proven useful for quantitative assessment of tissue oxy- and deoxyhaemoglobin concentrations and, more recently, for measurement of microvascular blood flow. In this paper, we focus on the flow monitoring technique: diffuse correlation spectroscopy (DCS). Representative clinical and pre-clinical studies from our laboratory illustrate the potential of DCS. Validation of DCS blood flow indices in human brain and muscle is presented. Comparison of DCS with arterial spin-labelled MRI, xenon-CT and Doppler ultrasound shows good agreement (0.50< r <0.95) over a wide range of tissue types and source detector distances, corroborating the potential of the method to measure perfusion non-invasively and in vivo at the microvasculature level. All-optical measurements of cerebral oxygen metabolism in both rat brain, following middle cerebral artery occlusion, and human brain, during functional activation, are also described. In both situations, the use of combined DCS and diffuse optical spectroscopy/near-infrared spectroscopy to monitor changes in oxygen consumption by the tissue is demonstrated. Finally, recent results spanning from gene expression-induced angiogenic response to stroke care and cancer treatment monitoring are discussed. Collectively, the research illustrates the capability of DCS to quantitatively monitor perfusion from bench to bedside, providing results that match up both with literature findings and with similar experiments performed with other techniques.


Sign in / Sign up

Export Citation Format

Share Document