Research on bearing health state prediction based on multidimensional information average convolutional neural network

2021 ◽  
Author(s):  
Jiawen Yu ◽  
Hao Huang ◽  
Xiali Liu ◽  
Yaohua Deng
Author(s):  
Xuefeng Zhao ◽  
Shengyuan Li ◽  
Hongguo Su ◽  
Lei Zhou ◽  
Kenneth J. Loh

Bridge management and maintenance work is an important part for the assessment the health state of bridge. The conventional management and maintenance work mainly relied on experienced engineering staffs by visual inspection and filling in survey forms. However, the human-based visual inspection is a difficult and time-consuming task and its detection results significantly rely on subjective judgement of human inspectors. To address the drawbacks of human-based visual inspection method, this paper proposes an image-based comprehensive maintenance and inspection method for bridges using deep learning. To classify the types of bridges, a convolutional neural network (CNN) classifier established by fine-turning the AlexNet is trained, validated and tested using 3832 images with three types of bridges (arch, suspension and cable-stayed bridge). For the recognition of bridge components (tower and deck of bridges), a Faster Region-based Convolutional Neural Network (Faster R-CNN) based on modified ZF-net is trained, validated and tested by utilizing 600 bridge images. To implement the strategy of a sliding window technique for the crack detection, another CNN from fine-turning the GoogLeNet is trained, validated and tested by employing a databank with cropping 1455 raw concrete images into 60000 intact and cracked images. The performance of the trained CNNs and Faster R-CNN is tested on some new images which are not used for training and validation processes. The test results substantiate the proposed method can indeed recognize the types and components and detect cracks for a bridges.


Author(s):  
Crina Deac ◽  
◽  
Gicu Călin Deac ◽  
Radu Constantin Parpală ◽  
Cicerone Laurentiu Popa ◽  
...  

Identifying the “health state” of the equipment is the domain of condition monitoring. The paper proposes a study of two models: DNN (Deep Neural Network) and CNN (Convolutional Neural Network) over an existent dataset provided by Case Western Reserve University for analyzing vibrations in fault diagnosis. After the model is trained on the windowed dataset using an optimal learning rate, minimizing the cost function, and is tested by computing the loss, accuracy and precision across the results, the weights are saved, and the models can be tested on other real data. The trained model recognizes raw time series data collected by micro electro-mechanical accelerometer sensors and detects anomalies based on former times series entries.


Author(s):  
Chan Hee Park ◽  
Hyunjae Kim ◽  
Junmin Lee ◽  
Giljun Ahn ◽  
Myeongbaek Youn ◽  
...  

Abstract Motors, which are one of the most widely used machines in the manufacturing field, take charge of a key role in precision machining. Therefore, it is important to accurately estimate the health state of the motor that affects the quality of the product. The research outlined in this paper aims to improve motor fault severity estimation by suggesting a novel deep learning method, specifically, feature inherited hierarchical convolutional neural network (FI-HCNN). FI-HCNN consists of a fault diagnosis part and a severity estimation part, arranged hierarchically. The main novelty of the proposed FI-HCNN is the special inherited structure between the hierarchy; the severity estimation part utilizes the latent features to exploit the fault-related representations in the fault diagnosis task. FI-HCNN can improve the accuracy of the fault severity estimation because the level-specific abstraction is supported by the latent features. Also, FI-HCNN has ease in practical application because it is developed based on stator current signals which are usually acquired for a control purpose. Experimental studies of mechanical motor faults, including eccentricity, broken rotor bars, and unbalanced conditions, are used to corroborate the high performance of FI-HCNN, as compared to both conventional methods and other hierarchical deep learning methods.


2020 ◽  
Author(s):  
S Kashin ◽  
D Zavyalov ◽  
A Rusakov ◽  
V Khryashchev ◽  
A Lebedev

2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


Sign in / Sign up

Export Citation Format

Share Document