Color correction against changes of light source in image acquisition by CCD camera

Author(s):  
Montserrat Corbalan-Fuertes ◽  
Maria S. Millan Garcia-Verela ◽  
Maria J. Yzuel
Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 148
Author(s):  
Xuefeng Chang ◽  
Kang Zheng ◽  
Dan Xie ◽  
Xiayun Shu ◽  
Keyu Xu ◽  
...  

An in situ image acquisition apparatus based on delay triggering for visualizing microdroplets formation is described. The imaging system includes a charge-coupled device camera, a motion control card, a driving circuit, a time delay triggering circuit, and a light source. By adjusting the varying trigger delay time which is synchronized with respect to the signal for jetting, the steady sequential images of the droplet flying in free space can be captured real-time by the system. Several image processing steps are taken to measure the diameters and coordinates of the droplets. Also, the jetting speeds can be calculated according to the delay time interval. For glycerin/water (60:40, mass ratio), under the given conditions of the self-made pneumatically diaphragm-driven drop-on-demand inkjet apparatus, the average of diameter and volume are measured as 266.8 μm and 9944 pL, respectively, and the maximum average velocity of the microdroplets is 0.689 m/s. Finally, the imaging system is applied to measure the volume of 200 microsolder balls generated from the inkjet apparatus. The average diameter is 87.96 μm, and the relative standard deviation is 0.83%. The results show good reproducibility. Unlike previous stroboscopic techniques, the present in situ imaging system which is absence of instantaneous high intensity light employs two control signals to stimulate the microdroplet generator and the charge-coupled device (CCD) camera. Hence, the system can avoid the desynchronization problem of signals which control the strobe light-emitting diode (LED) light source and the camera in previous equipment. This technology is a reliable and cost-effective approach for capturing and measuring microdroplets.


2008 ◽  
Vol 16 (6) ◽  
pp. 36-39 ◽  
Author(s):  
E. Voelkl ◽  
B. Jiang ◽  
Z.R. Dai ◽  
J.P Bradley

Image acquisition with a CCD camera is a single-press-button activity: after selecting exposure time and adjusting illumination, a button is pressed and the acquired image is perceived as the final, unmodified proof of what was seen in the microscope. Thus it is generally assumed that the image processing steps of e.g., “darkcurrent correction” and “gain normalization” do not alter the information content of the image, but rather eliminate unwanted artifacts.


2017 ◽  
Vol 24 (3) ◽  
pp. 679-685 ◽  
Author(s):  
P. Deman ◽  
S. Tan ◽  
G. Belev ◽  
N. Samadi ◽  
M. Martinson ◽  
...  

In this study, contrast-enhanced X-ray tomographic imaging for monitoring and quantifying respiratory disease in preclinical rodent models is proposed. A K-edge imaging method has been developed at the Canadian Light Source to very accurately obtain measurements of the concentration of iodinated contrast agent in the pulmonary vasculature and inhaled xenon in the airspaces of rats. To compare the iodine and xenon concentration maps, a scout projection image was acquired to define the region of interest within the thorax for imaging and to ensure the same locations were imaged in each K-edge subtraction (KES) acquisition. A method for triggering image acquisition based on the real-time measurements of respiration was also developed to obtain images during end expiration when the lungs are stationary, in contrast to other previously published studies that alter the respiration to accommodate the image acquisition. In this study, images were obtained in mechanically ventilated animals using physiological parameters at the iodine K-edge in vivo and at the xenon K-edge post mortem (but still under mechanical ventilation). The imaging techniques were performed in healthy Brown Norway rats and in age-matched littermates that had an induced lung injury to demonstrate feasibility of the imaging procedures and the ability to correlate the lung injury and the quantitative measurements of contrast agent concentrations between the two KES images. The respiratory-gated KES imaging protocol can be easily adapted to image during any respiratory phase and is feasible for imaging disease models with compromised lung function.


2021 ◽  
pp. 3-3
Author(s):  
A. Vudragovic ◽  
M. Jurkovic

We have done photometric calibration of the 60 cm Nedeljkovic telescope equipped with the FLI PL 230 CCD camera, mounted at the Astronomical Station Vidojevica (Serbia), using standard stars from the Landolt catalog. We have imaged 31 fields of standard stars using Johnson's BVRI filters during three nights in August 2019. We have measured both extinction and color correction. Relating our calibrated magnitudes to the magnitudes of standard stars from the Landolt catalog, we have achieved accuracy of 2%-5% for the BVRI magnitudes.


2013 ◽  
Vol 6 (5) ◽  
pp. 759-766
Author(s):  
郭汉洲 GUO Han-zhou ◽  
吴振刚 WU Zhen-gang ◽  
宋宣晓 SONG Xuan-xiao

Author(s):  
Mohamed Aref ◽  
Abdallah Hussein ◽  
Abou-Bakr Youssef ◽  
Ibrahim Aboughaleb ◽  
Amr Sharawi ◽  
...  

Thermal ablation modalities, for example radiofrequency ablation (RFA) and microwave ablation, are intended to prompt controlled tumour removal by raising tissue temperature. However, monitoring the size of the resulting tissue damage during the thermal removal procedures is a challenging task. The objective of this study was to evaluate the observation of RFA on an ex vivo liver sample with both a commercial and a low-cost system to distinguish between the normal and the ablated regions as well as the thermally affected regions. RFA trials were conducted on five different ex vivo normal bovine samples and monitored initially by a custom hyperspectral (HS) camera to measure the diffuse reflectance (Rd) utilising a polychromatic light source (tungsten halogen lamp) within the spectral range 348–950 nm. Next, the light source was replaced with monochromatic LEDs (415, 565 and 660 nm) and a commercial charge-coupled device (CCD) camera was used instead of the HS camera. The system algorithm comprises image enhancement (normalisation and moving average filter) and image segmentation with K-means clustering, combining spectral and spatial information to assess the variable responses to polychromatic light and monochromatic LEDs to highlight the differences in the Rd properties of thermally affected/normal tissue regions. The measured spectral signatures of the various regions, besides the calculation of the standard deviations (δ) between the generated six groups, guided us to select three optimal wavelengths (420, 540 and 660 nm) to discriminate between these various regions. Next, we selected six spectral images to apply the image processing to (at 450, 500, 550, 600, 650 and 700 nm). We noticed that the optimum image is the superimposed spectral images at 550, 600, 650 and 700 nm, which are capable of discriminating between the various regions. Later, we measured Rd with the CCD camera and commercially available monochromatic LED light sources at 415, 565 and 660 nm. Compared to the HS camera results, this system was more capable of identifying the ablated and the thermally affected regions of surface RFA than the side-penetration RFA of the investigated ex vivo liver samples. However, we succeeded in developing a low-cost system that provides satisfactory information to highlight the ablated and thermally affected region to improve the outcome of surgical tumour ablation with much shorter time for image capture and processing compared to the HS system.


2011 ◽  
Vol 219-220 ◽  
pp. 170-173
Author(s):  
Guo Ping Li ◽  
Hua Guan Liu ◽  
Chang Sheng Ai

The pressed protuberant characters on metal label are the difference of reflectance. It is very difficult to obtain the character of full binary image directly. It has presented a novel method of image acquisition on metal label pressed protuberant character based on moiré contour. At first, the principles of moiré contour were analyzed; Secondly, the experiment parameters were designed by using of shadowing moiré equipment and pressed characters’ height. The moiré image of metal label is captured through experiment by using of CCD camera. The binary image of pressed characters was output using moiré fringe image modulated by the characters’ height as input image contrast enhancing, complement, middle filter, automatic threshold etc. The binary image of pressed character was obtained using image preprocessing. At last, the binary images of moiré contour obtained and direct obtained were compared. The experiments show that the binary image of moiré contour obtained is better than direct obtained image.


2014 ◽  
Vol 940 ◽  
pp. 535-539
Author(s):  
Ren Bin Zhou ◽  
Xue Bing Liao ◽  
Yu Feng Zhang ◽  
Zheng Zhang

The picture collected by CCD camera usually takes surface interference informations, such as pollution and surface reflection.etc, in the meantime because of being subjected to light source and CCD camera oneself intelligent degree the influence of etc. factor, the ineluctability exists some yawp voices in the picture.For the sake of convex leak parts of pictures now, have to clean yawp voice and interference information, reserve true leakiness trace. This paper filters a processing, edge to withdraw towards identifying according to the calculator fluorescence picture of picture, and picture ash degree two values turned the selection method and fluorescence signal calculation method of threshold value to carry on a study.To fluorescence oil liquid seep into the examination carried on an experiment research, the realization seeped into the quantity of quantity to turn a calculation, to seep into the quantity carry on a precision examination, and carried on analysis as a result to the test.


Sign in / Sign up

Export Citation Format

Share Document