Comprehensive security framework for the communication and storage of medical images

2003 ◽  
Author(s):  
David Slik ◽  
Mike Montour ◽  
Tym Altman
Author(s):  
Mohammad Saleh Nambakhsh ◽  
M. Shiva

Exchange of databases between hospitals needs efficient and reliable transmission and storage techniques to cut down the cost of health care. This exchange involves a large amount of vital patient information such as biosignals and medical images. Interleaving one form of data such as 1-D signal over digital images can combine the advantages of data security with efficient memory utilization (Norris, Englehart & Lovely, 2001), but nothing prevents the user from manipulating or copying the decrypted data for illegal uses. Embedding vital information of patients inside their scan images will help physicians make a better diagnosis of a disease. In order to solve these issues, watermark algorithms have been proposed as a way to complement the encryption processes and provide some tools to track the retransmission and manipulation of multimedia contents (Barni, Podilchuk, Bartolini & Delp, 2001; Vallabha, 2003). A watermarking system is based on an imperceptible insertion of a watermark (a signal) in an image. This technique is adapted here for interleaving graphical ECG signals within medical images to reduce storage and transmission overheads as well as helping for computer-aided diagnostics system. In this chapter, we present a new wavelet-based watermarking method combined with the EZW coder. The principle is to replace significant wavelet coefficients of ECG signals by the corresponding significant wavelet coefficients belonging to the host image, which is much bigger in size than the mark signal. This chapter presents a brief introduction to watermarking and the EZW coder that acts as a platform for our watermarking algorithm.


2018 ◽  
Vol 8 (1) ◽  
pp. 154-172 ◽  
Author(s):  
O. Dorgham ◽  
Banan Al-Rahamneh ◽  
Ammar Almomani ◽  
Moh'd Al-Hadidi ◽  
Khalaf F. Khatatneh

Medical image information can be exchanged remotely through cloud-based medical imaging services. Digital Imaging and Communication in Medicine (DICOM) is considered to be the most commonly used medical image format among hospitals. The objective of this article is to enhance the secure transfer and storage of medical images on the cloud by using hybrid encryption algorithms, which are a combination of symmetric encryption algorithms and asymmetric encryption algorithms that make the encryption process faster and more secure. To this end, three different algorithms are chosen to build the framework. These algorithms are simple and suitable for hardware or software implementation because they require low memory and low computational power yet provide high security. Also, security was increased by using a digital signature technique. The results of the analyses showed that for a DICOM file with size 12.5 Mb, 2.957 minutes was required to complete the process. This was totaled from the encryption process took 1.898 minutes, and the decryption process took 1.059 minutes.


Author(s):  
Amanpreet Kaur Sandhu

Medical image compression plays a vital role in diagnosis of diseases which allowing manipulation, efficient, transmission and storage of color, binary and grayscale image. Before transmission and storage, a medical image may be required to be compressed. The objective of the study is to develop an efficient and effective technique for digital medical images which alleviates the blocking artifacts from grayscale image while retaining all relevant structures. In this paper, we demonstrate a highly engineered postprocessing filtering approach has been designed to remove blocking effects from medical images at low bit rate. The proposed technique is comprised of three strategies i.e. 1) a threshold valve scheme which is used to capture the pixel vectors containing blocking artifacts. 2) Blocking artifacts measurement techniques. The blocking artifacts are measured by three frequency related modes (low, Moderate and high frequency model). 3)  A directional filter which is used to remove over-smoothing and ringing artifacts near edges of block boundary. The algorithm is tested on digital medical grayscale images from different modalities. The experimental results illustrate that the proposed technique is more efficient on the basis of PSNR-B, MSSIM, and MOS indices than the state-of-the-art methods. The proposed algorithm can be seamlessly applied in area of medical image compression which high transmission efficiency and acceptable image quality can be guaranteed.


Author(s):  
Mohamed Fawzy Aly ◽  
Mahmood A. Mahmood

Medical images are digital representations of the body. Medical imaging technology has improved tremendously in the past few decades. The amount of diagnostic data produced in a medical image is vast and as a result could create problems when sending the medical data through a network. To overcome this, there is a great need for the compression of medical images for communication and storage purposes. This chapter contains an introduction to compression types, an overview of medical image modalities, and a survey on coding techniques that deal with 3D medical image compression.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1920
Author(s):  
Teo Manojlović ◽  
Ivan Štajduhar

The task of automatically extracting large homogeneous datasets of medical images based on detailed criteria and/or semantic similarity can be challenging because the acquisition and storage of medical images in clinical practice is not fully standardised and can be prone to errors, which are often made unintentionally by medical professionals during manual input. In this paper, we propose an algorithm for learning cluster-oriented representations of medical images by fusing images with partially observable DICOM tags. Pairwise relations are modelled by thresholding the Gower distance measure which is calculated using eight DICOM tags. We trained the models using 30,000 images, and we tested them using a disjoint test set consisting of 8000 images, gathered retrospectively from the PACS repository of the Clinical Hospital Centre Rijeka in 2017. We compare our method against the standard and deep unsupervised clustering algorithms, as well as the popular semi-supervised algorithms combined with the most commonly used feature descriptors. Our model achieves an NMI score of 0.584 with respect to the anatomic region, and an NMI score of 0.793 with respect to the modality. The results suggest that DICOM data can be used to generate pairwise constraints that can help improve medical images clustering, even when using only a small number of constraints.


Sign in / Sign up

Export Citation Format

Share Document