ringing artifacts
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 18)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
pp. 110931
Author(s):  
Richard J. Leute ◽  
Martin Ladecký ◽  
Ali Falsafi ◽  
Indre Jödicke ◽  
Ivana Pultarová ◽  
...  

2021 ◽  
Vol 11 (21) ◽  
pp. 9802
Author(s):  
Jeong-Min Shim ◽  
Young-Bo Kim ◽  
Chang-Ki Kang

This study aims to introduce a new compressed sensing averaging (CSA) technique for the reduction of blurring and/or ringing artifacts, depending on the k-space sampling ratio. A full k-space dataset and three randomly undersampled datasets were obtained for CSA images in a brain phantom and a healthy subject. An additional simulation was performed to assess the effect of the undersampling ratio on the images and the signal-to-noise ratios (SNRs). The image sharpness, spatial resolution, and contrast between tissues were analyzed and compared with other CSA techniques. Compared to CSA with multiple acquisition (CSAM) at 25%, 35%, and 45% undersampling, the reduction rates of the k-space lines of CSA with keyhole (CSAK) were 10%, 15%, and 22%, respectively, and the acquisition time was reduced by 16%, 23%, and 32%, respectively. In the simulation performed with a full sampling k-space dataset, the SNR decreased to 10.41, 9.80, and 8.86 in the white matter and 9.69, 9.35, and 8.46 in the gray matter, respectively. In addition, the ringing artifacts became substantially more predominant as the number of sampling lines decreased. The 50% modulation transfer functions were 0.38, 0.43, and 0.54 line pairs per millimeter for CSAM, CSAK with high-frequency sharing (CSAKS), and CSAK with high-frequency copying (CSAKC), respectively. In this study, we demonstrated that the smaller the sampling line, the more severe the ringing artifact, and that the CSAKC technique proposed to overcome the artifacts that occur when using CSA techniques did not generate artifacts, while it increased spatiotemporal resolution.


Author(s):  
Hong‐Hsi Lee ◽  
Dmitry S. Novikov ◽  
Els Fieremans
Keyword(s):  

2021 ◽  
Author(s):  
Tomoyoshi Shimobaba ◽  
Ikuo Hoshi ◽  
Harutaka Shiomi ◽  
Fan Wang ◽  
Takayuki Hara ◽  
...  
Keyword(s):  

Author(s):  
Amanpreet Kaur Sandhu

Medical image compression plays a vital role in diagnosis of diseases which allowing manipulation, efficient, transmission and storage of color, binary and grayscale image. Before transmission and storage, a medical image may be required to be compressed. The objective of the study is to develop an efficient and effective technique for digital medical images which alleviates the blocking artifacts from grayscale image while retaining all relevant structures. In this paper, we demonstrate a highly engineered postprocessing filtering approach has been designed to remove blocking effects from medical images at low bit rate. The proposed technique is comprised of three strategies i.e. 1) a threshold valve scheme which is used to capture the pixel vectors containing blocking artifacts. 2) Blocking artifacts measurement techniques. The blocking artifacts are measured by three frequency related modes (low, Moderate and high frequency model). 3)  A directional filter which is used to remove over-smoothing and ringing artifacts near edges of block boundary. The algorithm is tested on digital medical grayscale images from different modalities. The experimental results illustrate that the proposed technique is more efficient on the basis of PSNR-B, MSSIM, and MOS indices than the state-of-the-art methods. The proposed algorithm can be seamlessly applied in area of medical image compression which high transmission efficiency and acceptable image quality can be guaranteed.


Author(s):  
Susant Kumar Panigrahi ◽  
Supratim Gupta

Thresholding of Curvelet Coefficients, for image denoising, drains out subtle signal component in noise subspace. In effect, it also produces ringing artifacts near edges. We found that the noise sensitivity of Curvelet phases — in contrast to their magnitude — reduces with higher noise level. Thus, we preserved the phase of the coefficients below threshold at coarser scale and estimated the corresponding magnitude by Joint Bilateral Filtering (JBF) technique. In contrast to the traditional hard thresholding, the coefficients in the finest scale is estimated using Bilateral Filtering (BF). The proposed filtering approach in the finest scale exhibits better connectedness among the edges, while removing the granular artifacts in the denoised image due to hard thresholding. Finally, the use of Guided Image Filter (GIF) on the Curvelet-based reconstructed image (initial denoised image in spatial domain) ensures the preservation of small image information with sharper edges and textures detail in the final denoised image. The lower noise sensitivity of Curvelet phase at higher noise strength accelerates the performance of proposed method over several state-of-the-art techniques and provides comparable outcome at lower noise levels.


2021 ◽  
Vol 18 (2) ◽  
pp. 172988142199958
Author(s):  
Shundao Xie ◽  
Hong-Zhou Tan

In recent years, the application of two-dimensional (2D) barcode is more and more extensive and has been used as landmarks for robots to detect and peruse the information. However, it is hard to obtain a sharp 2D barcode image because of the moving robot, and the common solution is to deblur the blurry image before decoding the barcode. Image deblurring is an ill-posed problem, where ringing artifacts are commonly presented in the deblurred image, which causes the increase of decoding time and the limited improvement of decoding accuracy. In this article, a novel approach is proposed using blur-invariant shape and geometric features to make a blur-readable (BR) 2D barcode, which can be directly decoded even when seriously blurred. The finder patterns of BR code consist of two concentric rings and five disjoint disks, whose centroids form two triangles. The outer edges of the concentric rings can be regarded as blur-invariant shapes, which enable BR code to be quickly located even in a blurred image. The inner angles of the triangle are of blur-invariant geometric features, which can be used to store the format information of BR code. When suffering from severe defocus blur, the BR code can not only reduce the decoding time by skipping the deblurring process but also improve the decoding accuracy. With the defocus blur described by circular disk point-spread function, simulation results verify the performance of blur-invariant shape and the performance of BR code under blurred image situation.


2020 ◽  
Vol 10 (17) ◽  
pp. 5789
Author(s):  
Naoko Tsukamoto ◽  
Yoshihiro Sugaya ◽  
Shinichiro Omachi

Pansharpening (PS) is a process used to generate high-resolution multispectral (MS) images from high-spatial-resolution panchromatic (PAN) and high-spectral-resolution multispectral images. In this paper, we propose a method for pansharpening by focusing on a compressed sensing (CS) technique. The spectral reproducibility of the CS technique is high due to its image reproducibility, but the reproduced image is blurry. Although methods of complementing this incomplete reproduction have been proposed, it is known that the existing method may cause ringing artifacts. On the other hand, component substitution is another technique used for pansharpening. It is expected that the spatial resolution of the images generated by this technique will be as high as that of the high-resolution PAN image, because the technique uses the corrected intensity calculated from the PAN image. Based on these facts, the proposed method fuses the intensity obtained by the component substitution method and the intensity obtained by the CS technique to move the spatial resolution of the reproduced image close to that of the PAN image while reducing the spectral distortion. Experimental results showed that the proposed method can reduce spectral distortion and maintain spatial resolution better than the existing methods.


2020 ◽  
Vol 56 ◽  
pp. 39-69 ◽  
Author(s):  
Ashish V. Vanmali ◽  
Tushar Kataria ◽  
Samrudha G. Kelkar ◽  
Vikram M. Gadre

2020 ◽  
Vol 8 (6) ◽  
pp. 3613-3617

Biometric Authentication is a security process that replays on the unique biological characteristics of an individual. Biometric Authentication system compare a biometric data capture to stored, confirmed authentic data in a database. It is simply the process of verifying the identity using the measurements or other unique characteristics of the body, then logging us in a service, device and so on. It is an effective way to prove identity because it can’t be replicated. Multi focus Image fusion is a process of fusing two or more images to obtain a new one. Used to reduce the problems like blocking, ringing artifacts occurs because of DCT. The low frequency sub-band coefficients are fused by selecting coefficient having maximum spatial frequency. The goal is classifying the images to classes of authorized and unauthorized using multi class SVM. The fingerprint image and iris image are fused together using SWT, the features are extracted from the fused image and labelled using GLCM algorithm. The testing image is then compared with trained samples and classified as authorized or unauthorized by using FFNN.


Sign in / Sign up

Export Citation Format

Share Document