Mask pattern generator employing EPL technology

2003 ◽  
Author(s):  
Nobuyuki Yoshioka ◽  
Masaki Yamabe ◽  
Wataru Wakamiya ◽  
Nobuhiro Endo
2004 ◽  
Author(s):  
Henrik Sjoberg ◽  
Jean-Michel Chauvet ◽  
Jan Harkesjo ◽  
Peter Hogfeldt ◽  
Andrzej Karawajczyk ◽  
...  

2003 ◽  
Author(s):  
Johan Aman ◽  
Hans A. Fosshaug ◽  
Tobias Hedqvist ◽  
Jan Harkesjo ◽  
Peter Hogfeldt ◽  
...  

2009 ◽  
Author(s):  
H. Christopher Hamaker ◽  
Matthew J. Jolley ◽  
Andrew D. Berwick

2009 ◽  
Vol 18 (1) ◽  
pp. 3-12
Author(s):  
Andrea Vovka ◽  
Paul W. Davenport ◽  
Karen Wheeler-Hegland ◽  
Kendall F. Morris ◽  
Christine M. Sapienza ◽  
...  

Abstract When the nasal and oral passages converge and a bolus enters the pharynx, it is critical that breathing and swallow motor patterns become integrated to allow safe passage of the bolus through the pharynx. Breathing patterns must be reconfigured to inhibit inspiration, and upper airway muscle activity must be recruited and reconfigured to close the glottis and laryngeal vestibule, invert the epiglottis, and ultimately protect the lower airways. Failure to close and protect the glottal opening to the lower airways, or loss of the integration and coordination of swallow and breathing, increases the risk of penetration or aspiration. A neural swallow central pattern generator (CPG) controls the pharyngeal swallow phase and is located in the medulla. We propose that this swallow CPG is functionally organized in a holarchical behavioral control assembly (BCA) and is recruited with pharyngeal swallow. The swallow BCA holon reconfigures the respiratory CPG to produce the stereotypical swallow breathing pattern, consisting of swallow apnea during swallowing followed by prolongation of expiration following swallow. The timing of swallow apnea and the duration of expiration is a function of the presence of the bolus in the pharynx, size of the bolus, bolus consistency, breath cycle, ventilatory state and disease.


Author(s):  
Ranganathan Gopinath ◽  
Ravikumar Venkat Krishnan ◽  
Lua Winson ◽  
Phoa Angeline ◽  
Jin Jie

Abstract Dynamic Photon Emission Microscopy (D-PEM) is an established technique for isolating short and open failures, where photons emitted by transistors are collected by sensitive infra-red detectors while the device under test is electrically exercised with automated test equipment (ATE). Common tests, such as scan, use patterns that are generated through Automatic Test Pattern Generator (ATPG) in compressed mode. When these patterns are looped for D-PEM, it results in indeterministic states within cells during the load or unload sequences, making interpretation of emission challenging. Moreover, photons are emitted with lower probability and lesser energies for smaller technology nodes such as the FinFET. In this paper, we will discuss executing scan tests in manners that can be used to bring out emission which did not show up in conventional test loops.


Sign in / Sign up

Export Citation Format

Share Document