Swallow Pattern Generator Reconfiguration of the Respiratory Neural Network

2009 ◽  
Vol 18 (1) ◽  
pp. 3-12
Author(s):  
Andrea Vovka ◽  
Paul W. Davenport ◽  
Karen Wheeler-Hegland ◽  
Kendall F. Morris ◽  
Christine M. Sapienza ◽  
...  

Abstract When the nasal and oral passages converge and a bolus enters the pharynx, it is critical that breathing and swallow motor patterns become integrated to allow safe passage of the bolus through the pharynx. Breathing patterns must be reconfigured to inhibit inspiration, and upper airway muscle activity must be recruited and reconfigured to close the glottis and laryngeal vestibule, invert the epiglottis, and ultimately protect the lower airways. Failure to close and protect the glottal opening to the lower airways, or loss of the integration and coordination of swallow and breathing, increases the risk of penetration or aspiration. A neural swallow central pattern generator (CPG) controls the pharyngeal swallow phase and is located in the medulla. We propose that this swallow CPG is functionally organized in a holarchical behavioral control assembly (BCA) and is recruited with pharyngeal swallow. The swallow BCA holon reconfigures the respiratory CPG to produce the stereotypical swallow breathing pattern, consisting of swallow apnea during swallowing followed by prolongation of expiration following swallow. The timing of swallow apnea and the duration of expiration is a function of the presence of the bolus in the pharynx, size of the bolus, bolus consistency, breath cycle, ventilatory state and disease.

2002 ◽  
Vol 110 (6) ◽  
pp. 891-898 ◽  
Author(s):  
Christine McCusker ◽  
Martin Chicoine ◽  
Qutayba Hamid ◽  
Bruce Mazer

2020 ◽  
Vol 2 (1) ◽  
pp. 35

Among the various sleep-disordered breathing patterns infant’s experience, like periodic breathing, premature apnea, obstructive sleep apnea, has been considered a major cause of concern. Upper airway structure, mechanics of the pulmonary system, etc., are a few reasons why the infants are vulnerable to obstructive sleep-disordered. An imbalance in the viscoelastic properties of the pharynx, dilators, and pressure can lead to airway collapse. A low level of oxygen in blood or hypoxemia is considered a characteristic in infants with severe OSA. Invasive treatments like nasopharyngeal tubes, continuous positive airway pressure (CPAP), or tracheostomy are found to be helpful in most cases where infants experience sleep apnea. This paper proposes an efficient system for monitoring obstructive sleep apnea in infants on a long-term basis, and if any anomaly is detected, the device provides Continuous Airway Pressure therapy until the abnormality is normalized.


1986 ◽  
Vol 60 (6) ◽  
pp. 2123-2127 ◽  
Author(s):  
L. Y. Lee ◽  
R. F. Morton ◽  
M. J. McIntosh ◽  
J. A. Turbek

The purpose of this study was to develop an isolated upper airway preparation in conscious dogs. Each of the four dogs was trained to wear an individually fitted respiratory mask and surgically prepared with two side-hole tracheostomies. After full recovery, one endotracheal tube was inserted caudally into the lower tracheostomy hole and another tube cranially into the upper tracheostomy. When the two endotracheal tubes were connected to a breathing circuit including a box-balloon system, the magnitude and pattern of the inspiratory flow through the upper airway were identical to that inhaled spontaneously into the lungs by the dogs, but the gas medium inhaled into the upper airway could be independently controlled. Thus it allowed test gas mixtures to be inhaled spontaneously through an isolated upper airway. One limitation was that the inspired gas remained in the upper airway during expiration, but this can be corrected by a simple modification of the breathing circuit. This preparation was tested in studying the respiratory effects of upper airway exposure to CO2 gas mixtures. Our results showed small but significant reduction in both rate and volume of respiration when the concentration of CO2 gas mixture inhaled through the upper airway exceeded 5%. Irregular breathing patterns were frequently elicited in these dogs by higher concentrations (greater than 12%) of CO2.


2003 ◽  
Vol 89 (4) ◽  
pp. 2120-2136 ◽  
Author(s):  
Itay Hurwitz ◽  
Irving Kupfermann ◽  
Klaudiusz R. Weiss

Consummatory feeding movements in Aplysia californica are organized by a central pattern generator (CPG) in the buccal ganglia. Buccal motor programs similar to those organized by the CPG are also initiated and controlled by the cerebro-buccal interneurons (CBIs), interneurons projecting from the cerebral to the buccal ganglia. To examine the mechanisms by which CBIs affect buccal motor programs, we have explored systematically the synaptic connections from three of the CBIs (CBI-1, CBI-2, CBI-3) to key buccal ganglia CPG neurons (B31/B32, B34, and B63). The CBIs were found to produce monosynaptic excitatory postsynaptic potentials (EPSPs) with both fast and slow components. In this report, we have characterized only the fast component. CBI-2 monosynaptically excites neurons B31/B32, B34, and B63, all of which can initiate motor programs when they are sufficiently stimulated. However, the ability of CBI-2 to initiate a program stems primarily from the excitation of B63. In B31/B32, the size of the EPSPs was relatively small and the threshold for excitation was very high. In addition, preventing firing in either B34 or B63 showed that only a block in B63 firing prevented CBI-2 from initiating programs in response to a brief stimulus. The connections from CBI-2 to the buccal ganglia neurons showed a prominent facilitation. The facilitation contributed to the ability of CBI-2 to initiate a BMP and also led to a change in the form of the BMP. The cholinergic blocker hexamethonium blocked the fast EPSPs induced by CBI-2 in buccal ganglia neurons and also blocked the EPSPs between a number of key CPG neurons within the buccal ganglia. CBI-2 and B63 were able to initiate motor patterns in hexamethonium, although the form of a motor pattern was changed, indicating that non-hexamethonium-sensitive receptors contribute to the ability of these cells to initiate bursts. By contrast to CBI-2, CBI-1 excited B63 but inhibited B34. CBI-3 excited B34 and not B63. The data indicate that CBI-1, -2, and -3 are components of a system that initiates and selects between buccal motor programs. Their behavioral function is likely to depend on which combination of CBIs and CPG elements are activated.


2010 ◽  
Vol 4 (4) ◽  
Author(s):  
Tamera L. Scholz ◽  
Prem A. Midha ◽  
Larry J. Anderson ◽  
David N. Ku

The pathogens causing pneumonia are difficult to identify because a high quality specimen from the lower lung is difficult to obtain. A new specimen collection device is designed to collect aerosol specimens selectively from the lower lung generated during deep coughing. The PneumoniaCheck device utilizes a separation reservoir and Venturi valve to segregate contents from the upper and lower airways. The device also includes several specially designed features to exclude oral contaminants from the sample and a filter to collect the aerosolized pathogens. Verification testing of PneumoniaCheck demonstrates effective separation of upper airway gas from the lower airway gas (p<0.0001) and exclusion of both liquid and viscous oral material (p<0.0001) from the collection chamber. The filters can collect 99.9997% of virus and bacteria sized particles from the sampled lower lung aerosols. The selective collection of specimens from the lower airway may aid in the diagnosis of specific pathogens causing pneumonia.


1988 ◽  
Vol 29 (4) ◽  
pp. 407-410 ◽  
Author(s):  
M. Birch-Iensen ◽  
P. S. Borgström ◽  
O. Ekberg

The pattern of swallowing by which the oral bolus reaches an air-containing oropharynx is called an ‘open swallow’ whereas the sequence in which the oropharynx is collapsed on the arrival of the bolus is called a ‘closed swallow’. The significance of this distinction was further analyzed by a correlation with other laryngeal and pharyngeal functions during swallowing in a cineradiologic study in 75 dysphagic patients and 50 asymptomatic volunteers. The relative incidence of open and closed type swallows was similar in the two groups. The maximum elevation of the pharynx and larynx was the same in open and closed swallow, although in individuals with an open swallow the elevation occurred later than in individuals with a closed swallow. Epiglottic movement disturbances, defective closure of the laryngeal vestibule, pharyngeal constrictor muscle paresis, cricopharyngeal incoordination, cervical esophageal webs and Zenker diverticula were significantly more common in individuals with an open pharyngeal swallow than in those with closed swallowing.


2020 ◽  
Author(s):  
Josh Williams ◽  
Jari Kolehmainen ◽  
Steve Cunningham ◽  
Ali Ozel ◽  
Uwe Wolfram

AbstractFor many of the one billion sufferers of respiratory diseases worldwide, managing their disease with inhalers improves their ability to breathe. Poor disease management and rising pollution can trigger exacerbations which require urgent relief. Higher drug deposition in the throat instead of the lungs limit the impact on patient’s symptoms. To optimise delivery to the lung, patient-specific computational studies of aerosol inhalation can be used. However in many studies, inhalation modelling does not represent an exacerbation, where the patient’s breath is much faster and shorter. Here we compare differences in deposition of inhaler particles in the airways of a healthy male, female lung cancer and child cystic fibrosis patient. We aimed to evaluate deposition differences during an exacerbation with image-based healthy and diseased patient models. We found that during an exacerbation, particles progressing to the lower airways were distributed similarly to those inhaled during healthy breathing, but fewer in quantity. Throat deposits were halved in the healthy patient compared to the diseased patients under extreme inhalation, due to changes in the detailed shape of the throat. Our results identify that the modelled upper airway must be patient-specific, and an exacerbating profile tested for optimal measurement of reliever inhaler deposition.


2020 ◽  
pp. S35-S42
Author(s):  
M. Lucanska ◽  
A. Hajtman ◽  
V. Calkovsky ◽  
P. Kunc ◽  
R. Pecova

Cough is one of the most important defensive reflexes. However, extensive non- productive cough is a harmful mechanism leading to the damage of human airways. Cough is initiated by activation of vagal afferents in the airways. The site of their convergence is particularly the nucleus of the solitary tract (nTS). The second-order neurons terminate in the pons, medulla and spinal cord and there is also the cortical and subcortical control of coughing. Upper airway cough syndrome (UACS) – previously postnasal drip syndrome - is one of the most common causes of chronic cough together with asthma and gastroesophageal reflux. The main mechanisms leading to cough in patients with nasal and sinus diseases are postnasal drip, direct irritation of nasal mucosa, inflammation in the lower airways, upper airway inflammation and the cough reflex sensitization. The cough demonstrated by UACS patients is probably due to hypersensitivity of the upper airways sensory nerve or lower airways sensory nerve, or a combination of both. Further studies are needed to clarify this mechanism.


2019 ◽  
Vol 7 (2) ◽  
pp. 27 ◽  
Author(s):  
Akira Kanda ◽  
Yoshiki Kobayashi ◽  
Mikiya Asako ◽  
Koichi Tomoda ◽  
Hideyuki Kawauchi ◽  
...  

The concept of united airway disease comprises allergic rhinitis (AR) with asthma, and eosinophilic chronic rhinosinusitis (ECRS) with asthma. It embodies a comprehensive approach to the treatment of upper and lower airway inflammation. The treatment of upper airway inflammation reduces asthma symptoms and decreases the dose of inhaled corticosteroids (ICS) necessary to treat asthma. However, little is known about the mechanisms of interaction between upper and lower airway inflammation. Here we review these mechanisms, focusing on neural modulation and introduce a novel therapeutic approach to united airway disease using a fine-particle ICS. Our understanding of the relationship between the upper and lower airways and its contribution to T helper 2 (Th2)-skewed disease, such as AR and/or ECRS with asthma, has led us to this novel therapeutic strategy for a comprehensive approach to the treatment of upper airway inflammation with asthma.


2008 ◽  
Vol 105 (4) ◽  
pp. 1083-1090 ◽  
Author(s):  
Nathalie Samson ◽  
Bianca Roy ◽  
Alain Ouimet ◽  
François Moreau-Bussière ◽  
Dominique Dorion ◽  
...  

The present study investigated the mechanism by which continuous positive airway pressure (CPAP) suppresses nonnutritive swallowing (NNS) during quiet sleep (QS) in newborn lambs. Eighteen full-term lambs were chronically instrumented and evenly distributed into three separate groups to determine the extent to which modulation of NNS may be attributed to stimulation of upper airway and/or bronchopulmonary mechanoreceptors. Six lambs were tracheotomized, six other lambs underwent a two-step bilateral intrathoracic vagotomy, and the remaining six lambs underwent chronic laryngotracheal separation (isolated upper airway group). Forty-eight hours after surgery, each nonsedated lamb underwent polysomnographic recordings on three consecutive days. States of alertness, NNS and respiratory movements were recorded. Results demonstrate that a CPAP of 6 cmH2O inhibited NNS during QS while administered directly on the lower airways and that bivagotomy prevented this inhibition. However, application of CPAP on the upper airways only also inhibited NNS during QS. Finally, the application of a CPAP of 6 cmH2O had no systematic effect on NNS-breathing coordination (assessed by the respiratory phase preceding and following NNS). In conclusion, our results suggest that bronchopulmonary receptors are implicated in the inhibiting effects of nasal CPAP of 6 cmH2O on NNS in all our experimental conditions, whereas upper airway receptors are only implicated in certain conditions.


Sign in / Sign up

Export Citation Format

Share Document