Holographic neural networks versus conventional neural networks: a comparative evaluation for the classification of landmine targets in ground-penetrating radar images

2004 ◽  
Author(s):  
Naga R. Mudigonda ◽  
Ray Kacelenga ◽  
Mark Edwards
2015 ◽  
Vol 25 (4) ◽  
pp. 955-960 ◽  
Author(s):  
Piotr Szymczyk ◽  
Sylwia Tomecka-Suchoń ◽  
Magdalena Szymczyk

Abstract In this article a new neural network based method for automatic classification of ground penetrating radar (GPR) traces is proposed. The presented approach is based on a new representation of GPR signals by polynomials approximation. The coefficients of the polynomial (the feature vector) are neural network inputs for automatic classification of a special kind of geologic structure—a sinkhole. The analysis and results show that the classifier can effectively distinguish sinkholes from other geologic structures.


Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. K111-K118 ◽  
Author(s):  
Stephen Moysey ◽  
Rosemary J. Knight ◽  
Harry M. Jol

Image texture is one of the key features used for the interpretation of radar facies in ground-penetrating radar (GPR) data. Establishing quantitative measures of texture is therefore a critical step in the effective development of advanced techniques for the interpretation of GPR images. This study presents the first effort to evaluate whether different measures of a GPR image capture the features of the data that, when coupled with a neural network classifier, are able to reproduce a human interpretation. The measures compared in this study are instantaneous amplitude and frequency, as well as the variance, covariance, Fourier-Mellin transform, R-transform, and principle components (PCs) determined for a window of radar data. A [Formula: see text] GPR section collected over the William River delta in Saskatchewan, Canada, is used for the analysis. We found that measures describing the local spatial structure of the GPR image (i.e., covariance, Fourier-Mellin, R-transform, and PCs) were able to reproduce human interpretations with greater than 93% accuracy. In contrast, classifications based on image variance and the instantaneous attributes agreed with the human interpretation less than 68% of the time. Among the textural measures that preserve spatial structure, we found that the best ones are insensitive to within facies variability while emphasizing differences between facies. For the specific case of the William River delta, the Fourier-Mellin transform, which retains information about the spatial correlation of reflections while remaining insensitive to their orientation, outperformed the other measures. Our work in describing radar texture provides an important first step in defining quantitative criteria that can be used to aid in the classification of radar data.


Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1310-1317 ◽  
Author(s):  
Steven J. Cardimona ◽  
William P. Clement ◽  
Katharine Kadinsky‐Cade

In 1995 and 1996, researchers associated with the US Air Force’s Phillips and Armstrong Laboratories took part in an extensive geophysical site characterization of the Groundwater Remediation Field Laboratory located at Dover Air Force Base, Dover, Delaware. This field experiment offered an opportunity to compare shallow‐reflection profiling using seismic compressional sources and low‐frequency ground‐penetrating radar to image a shallow, unconfined aquifer. The main target within the aquifer was the sand‐clay interface defining the top of the underlying aquitard at 10 to 14 m depth. Although the water table in a well near the site was 8 m deep, cone penetration geotechnical data taken across the field do not reveal a distinct water table. Instead, cone penetration tests show a gradual change in electrical properties that we interpret as a thick zone of partial saturation. Comparing the seismic and radar data and using the geotechnical data as ground truth, we have associated the deepest coherent event in both reflection data sets with the sand‐clay aquitard boundary. Cone penetrometer data show the presence of a thin lens of clays and silts at about 4 m depth in the north part of the field. This shallow clay is not imaged clearly in the low‐frequency radar profiles. However, the seismic data do image the clay lens. Cone penetrometer data detail a clear change in the soil classification related to the underlying clay aquitard at the same position where the nonintrusive geophysical measurements show a change in image character. Corresponding features in the seismic and radar images are similar along profiles from common survey lines, and results of joint interpretation are consistent with information from geotechnical data across the site.


Sign in / Sign up

Export Citation Format

Share Document