Agent-based modeling in land use and land cover change studies

2007 ◽  
Author(s):  
Guoping Wu ◽  
Buqing Zhong ◽  
Huichao Si ◽  
Bo Wei ◽  
Qinshu Wu ◽  
...  
2021 ◽  
Vol 23 (2) ◽  
pp. 183-189
Author(s):  
Sudirman Nganro ◽  
Slamet Trisutomo ◽  
Roland Barkey ◽  
Mukti Ali ◽  
Hidefumi Imura ◽  
...  

Migration from rural area to urban area increases urban population. It increases and needs for settlements, leading to conversion of agricultural lands into settlement areas. Inconsistent land use compared with spatial planning causes change in land use. Spatial land use expansion can be monitored and predicted by modeling. NetLogo application is a software integrated with Agent-Based Modeling (ABM), which can be used to predict change of land use with various complex parameters. The present study used population growth as a parameter to predict change of land use of Makassar in 2050 based on 2017 land use classification map as the start of the prediction. The analysis result showed that the biggest change of land use happens to Settlement class which is 594.74 hectares and the smallest is Water Body class which is 8.76 hectares.


2011 ◽  
Vol 13 (5) ◽  
pp. 695-700
Author(s):  
Zhihua TANG ◽  
Xianlong ZHU ◽  
Cheng LI

2021 ◽  
Vol 10 (5) ◽  
pp. 325
Author(s):  
Ima Ituen ◽  
Baoxin Hu

Mapping and understanding the differences in land cover and land use over time is an essential component of decision-making in sectors such as resource management, urban planning, and forest fire management, as well as in tracking of the impacts of climate change. Existing methods sometimes pose a barrier to the effective monitoring of changes in land cover and land use, since a threshold parameter is often needed and determined based on trial and error. This study aimed to develop an automatic and operational method for change detection on a large scale from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Super pixels were the basic unit of analysis instead of traditional individual pixels. T2 tests based on the feature vectors of temporal Normalized Difference Vegetation Index (NDVI) and land surface temperature were used for change detection. The developed method was applied to data over a predominantly vegetated area in northern Ontario, Canada spanning 120,000 sq. km from 2001–2016. The accuracies ranged between 78% and 88% for the NDVI-based test, from 74% to 86% for the LST-based test, and from 70% to 86% for the joint method compared with manual interpretation. Our proposed method for detecting land cover change provides a functional and viable alternative to existing methods of land cover change detection as it is reliable, repeatable, and free from uncertainty in establishing a threshold for change.


2021 ◽  
Vol 125 ◽  
pp. 107447 ◽  
Author(s):  
Rehana Rasool ◽  
Abida Fayaz ◽  
Mifta ul Shafiq ◽  
Harmeet Singh ◽  
Pervez Ahmed

Sign in / Sign up

Export Citation Format

Share Document