Second harmonic optical coherence microscopy for functional optical imaging of biological tissues

2008 ◽  
Author(s):  
Chang-Keun Kim ◽  
Sang-Won Lee ◽  
Hyun-Woo Jeong ◽  
Beop-Min Kim
2017 ◽  
Vol 8 (2) ◽  
pp. 608 ◽  
Author(s):  
Samuel Choi ◽  
Keita Sato ◽  
Takeru Ota ◽  
Fumiaki Nin ◽  
Shogo Muramatsu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fouzi Benboujja ◽  
Christopher Hartnick

AbstractIdentifying distinct normal extracellular matrix (ECM) features from pathology is of the upmost clinical importance for laryngeal diagnostics and therapy. Despite remarkable histological contributions, our understanding of the vocal fold (VF) physiology remains murky. The emerging field of non-invasive 3D optical imaging may be well-suited to unravel the complexity of the VF microanatomy. This study focused on characterizing the entire VF ECM in length and depth with optical imaging. A quantitative morphometric evaluation of the human vocal fold lamina propria using two-photon excitation fluorescence (TPEF), second harmonic generation (SHG), and optical coherence tomography (OCT) was investigated. Fibrillar morphological features, such as fiber diameter, orientation, anisotropy, waviness and second-order statistics features were evaluated and compared according to their spatial distribution. The evidence acquired in this study suggests that the VF ECM is not a strict discrete three-layer structure as traditionally described but instead a continuous assembly of different fibrillar arrangement anchored by predominant collagen transitions zones. We demonstrated that the ECM composition is distinct and markedly thinned in the anterior one-third of itself, which may play a role in the development of some laryngeal diseases. We further examined and extracted the relationship between OCT and multiphoton imaging, promoting correspondences that could lead to accurate 3D mapping of the VF architecture in real-time during phonosurgeries. As miniaturization of optical probes is consistently improving, a clinical translation of OCT imaging and multiphoton imaging, with valuable qualitative and quantitative features, may have significant implications for treating voice disorders.


1999 ◽  
Author(s):  
A. Dubois ◽  
L. Vabre ◽  
M. Lebec ◽  
S. Lévêque ◽  
A. C. Boccara ◽  
...  

1997 ◽  
Vol 3 (S2) ◽  
pp. 795-796
Author(s):  
Joseph A. Izatt ◽  
Manish Kulkarni ◽  
Hsing-Wen Wang ◽  
Michael V. Sivak

Optical coherence microscopy (OCM) is a novel technique complementary to optical coherence tomography (OCT) which combines low-coherence interferometry with confocal microscopy to achieve micron-scale resolution imaging in highly scattering media. OCM may be implemented using a single-mode fiber-optic low-coherence interferometer (See Fig. 1). A high numerical aperture objective is used to focus sample-arm light into the specimen, and the reference arm length of the interferometer is adjusted to match the sample arm focal plane optical depth. The sample arm of the interferometer comprises a scanning confocal microscope, in which either the sample or the probe beam is laterally scanned in a raster pattern, and the optical fiber acts as a single-mode confocal aperture for combined light illumination and collection. The reference arm length of the interferometer establishes the depth position of an interferometric “coherence gate” in the sample, from which backscattered light is preferentially collected. Initial studies of OCM in scattering phantoms have demonstrated that this technique provides increased optical sectioning depth compared to confocal microscopy alone.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jun Zhu ◽  
Hercules Rezende Freitas ◽  
Izumi Maezawa ◽  
Lee-way Jin ◽  
Vivek J. Srinivasan

AbstractIn vivo, minimally invasive microscopy in deep cortical and sub-cortical regions of the mouse brain has been challenging. To address this challenge, we present an in vivo high numerical aperture optical coherence microscopy (OCM) approach that fully utilizes the water absorption window around 1700 nm, where ballistic attenuation in the brain is minimized. Key issues, including detector noise, excess light source noise, chromatic dispersion, and the resolution-speckle tradeoff, are analyzed and optimized. Imaging through a thinned-skull preparation that preserves intracranial space, we present volumetric imaging of cytoarchitecture and myeloarchitecture across the entire depth of the mouse neocortex, and some sub-cortical regions. In an Alzheimer’s disease model, we report that findings in superficial and deep cortical layers diverge, highlighting the importance of deep optical biopsy. Compared to other microscopic techniques, our 1700 nm OCM approach achieves a unique combination of intrinsic contrast, minimal invasiveness, and high resolution for deep brain imaging.


Sign in / Sign up

Export Citation Format

Share Document