scholarly journals The gas pixel detector as an x-ray photoelectric polarimeter with a large field of view

Author(s):  
Fabio Muleri ◽  
Paolo Soffitta ◽  
Ronaldo Bellazzini ◽  
Alessandro Brez ◽  
Enrico Costa ◽  
...  
Author(s):  
Jianheng Huang ◽  
Yaohu Lei ◽  
Xin Liu ◽  
Jinchuan Guo ◽  
Ji Li ◽  
...  

2011 ◽  
Author(s):  
W. Li ◽  
J. Gelb ◽  
Y. Yang ◽  
Y. Guan ◽  
W. Wu ◽  
...  

2001 ◽  
Vol 19 (2) ◽  
pp. 285-293 ◽  
Author(s):  
T.A. PIKUZ ◽  
A. YA. FAENOV ◽  
M. FRAENKEL ◽  
A. ZIGLER ◽  
F. FLORA ◽  
...  

The shadow monochromatic backlighting (SMB) scheme, a modification of the well-known soft X-ray monochromatic backlighting scheme, is proposed. It is based on a spherical crystal as the dispersive element and extends the traditional scheme by allowing one to work with a wide range of Bragg angles and thus in a wide spectral range. The advantages of the new scheme are demonstrated experimentally and supported numerically by ray-tracing simulations. In the experiments, the X-ray backlighter source is a laser-produced plasma, created by the interaction of an ultrashort pulse, Ti:Sapphire laser (120 fs, 3–5 mJ, 1016 W/cm2 on target) or a short wavelength XeCl laser (10 ns, 1–2 J, 1013 W/cm2 on target) with various solid targets (Dy, Ni + Cr, BaF2). In both experiments, the X-ray sources are well localized spatially (∼20 μm) and are spectrally tunable in a relatively wide wavelength range (λ = 8–15 Å). High quality monochromatic (δλ/λ ∼ 10−5–10−3) images with high spatial resolution (up to ∼4 μm) over a large field of view (a few square millimeters) were obtained. Utilization of spherically bent crystals to obtain high-resolution, large field, monochromatic images in a wide range of Bragg angles (35° < Θ < 90°) is demonstrated for the first time.


2014 ◽  
Vol 898 ◽  
pp. 614-617
Author(s):  
Rui Hong Li ◽  
Yue Ping Han

The present paper reviews the X-ray grating imaging systems at home and abroad from the aspects of technological characterizations and the newest researching focus. First, not only the imaging principles and the frameworks of the typical X-ray grating imaging system based on Talbot-Lau interferometry method, but also the algorithms of retrieving the signals of attenuation, refraction and small-angle scattering are introduced. Second, the system optimizing methods are discussed, which involves mainly the relaxing the requirement of high positioning resolution and strict circumstances for gratings and designing large field of view with high resolution. Third, two and four-dimensional grating-based X-ray imaging techniques are introduced.


2011 ◽  
Vol 99 (4) ◽  
pp. 041111 ◽  
Author(s):  
T. Thuering ◽  
P. Modregger ◽  
T. Grund ◽  
J. Kenntner ◽  
C. David ◽  
...  

2010 ◽  
Vol 12 (9) ◽  
pp. 095006 ◽  
Author(s):  
B Pfau ◽  
C M Günther ◽  
S Schaffert ◽  
R Mitzner ◽  
B Siemer ◽  
...  

Author(s):  
Jennifer Alameda ◽  
Jeff Robinson ◽  
Catherine Burcklen ◽  
Tom Pardini ◽  
Eberhard Spiller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document