Three-dimensional scene reconstruction by using lenslet array model in computational integral imaging

2009 ◽  
Author(s):  
YuSheng Huang ◽  
Jun Xia ◽  
HanChun Yin
2013 ◽  
Vol 284-287 ◽  
pp. 2992-2997 ◽  
Author(s):  
Xiao Wei Li ◽  
Dong Hwan Kim ◽  
Sung Jin Cho ◽  
Seok Tae Kim

Three dimensional (3-D) images encryption schemes can provide feasible and secure for images encryption due to the 3-D properties of images. In this paper, we present a novel 3-D images encryption algorithm by combining use of integral imaging (II) and maximum-length cellular automata (MLCA) as the secret key ciphering for 3D image encryption technique. In this proposed algorithm, a lenslet array first decomposes the 3-D object into 2-D elemental images (EIs) via the pick-up process of II. We encrypt the 2-D EIs with an encryption method based on linear and complemented MLCA. Decryption process is the opposite of operation encryption process: The 2-D EIs is recovered by the MLCA key, 3-D object is reconstructed by the recovered EIs via computational integral imaging (CII) reconstruction. To verify the usefulness of the proposed algorithm, we carry out the computational experiments and present the experimental results for various attacks. Experimental results show that the proposed algorithm can improve the performance of encryption against various attacks due to large key space in MLCA and 3-D characteristic of data redundancy.


Sign in / Sign up

Export Citation Format

Share Document