computational reconstruction
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 31)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Laurent Caplette ◽  
Nicholas Turk-Browne

Revealing the contents of mental representations is a longstanding goal of cognitive science. However, there is currently no general framework for providing direct access to representations of high-level visual concepts. We asked participants to indicate what they perceived in images synthesized from random visual features in a deep neural network. We then inferred a mapping between the semantic features of their responses and the visual features of the images. This allowed us to reconstruct the mental representation of virtually any common visual concept, both those reported and others extrapolated from the same semantic space. We successfully validated 270 of these reconstructions as containing the target concept in a separate group of participants. The visual-semantic mapping uncovered with our method further generalized to new stimuli, participants, and tasks. Finally, it allowed us to reveal how the representations of individual observers differ from each other and from those of neural networks.


Author(s):  
Roberto Antonio Cuellar Lozano ◽  
Jorge Enrique Rueda P

We present a new iterative technique based on successive field propagation using the Reyleigh-Sommerfeld (RS) approximation, to generate by computer the amplitude on-axis hologram of an object on a tilted plane. The technique was  validated doing optical and computational reconstruction of the hologram.


2021 ◽  
Vol 2 (1) ◽  
pp. e382
Author(s):  
Roland Hausser

For long-term upscaling, the computational reconstruction of a complex natural mechanism must be input-output equivalent with the prototype, i.e. the reconstruction must take the same input and produce the same output in the same processing order as the original. Accordingly, the modeling of natural language communication in Database Semantics (DBS) uses a time-linear derivation order for the speaker’s output and the hearer’s input. The language-dependent surfaces serving as the vehicle of content transfer from speaker to hearer are raw data without meaning or any grammatical properties whatsoever, but measurable by natural science.


ACS Photonics ◽  
2021 ◽  
Author(s):  
Ziwei Cheng ◽  
Yuhe Zhao ◽  
Jiahui Zhang ◽  
Hailong Zhou ◽  
Dingshan Gao ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Thomas Stiehl ◽  
Anna Marciniak-Czochra

Acute myeloid leukemia is an aggressive cancer of the blood forming system. The malignant cell population is composed of multiple clones that evolve over time. Clonal data reflect the mechanisms governing treatment response and relapse. Single cell sequencing provides most direct insights into the clonal composition of the leukemic cells, however it is still not routinely available in clinical practice. In this work we develop a computational algorithm that allows identifying all clonal hierarchies that are compatible with bulk variant allele frequencies measured in a patient sample. The clonal hierarchies represent descendance relations between the different clones and reveal the order in which mutations have been acquired. The proposed computational approach is tested using single cell sequencing data that allow comparing the outcome of the algorithm with the true structure of the clonal hierarchy. We investigate which problems occur during reconstruction of clonal hierarchies from bulk sequencing data. Our results suggest that in many cases only a small number of possible hierarchies fits the bulk data. This implies that bulk sequencing data can be used to obtain insights in clonal evolution.


Author(s):  
Christopher Cherry ◽  
David R. Maestas ◽  
Jin Han ◽  
James I. Andorko ◽  
Patrick Cahan ◽  
...  

2021 ◽  
Vol 18 (180) ◽  
pp. 20210142
Author(s):  
Jacob D. Davidson ◽  
Matthew M. G. Sosna ◽  
Colin R. Twomey ◽  
Vivek H. Sridhar ◽  
Simon P. Leblanc ◽  
...  

We investigate key principles underlying individual, and collective, visual detection of stimuli, and how this relates to the internal structure of groups. While the individual and collective detection principles are generally applicable, we employ a model experimental system of schooling golden shiner fish ( Notemigonus crysoleucas ) to relate theory directly to empirical data, using computational reconstruction of the visual fields of all individuals. This reveals how the external visual information available to each group member depends on the number of individuals in the group, the position within the group, and the location of the external visually detectable stimulus. We find that in small groups, individuals have detection capability in nearly all directions, while in large groups, occlusion by neighbours causes detection capability to vary with position within the group. To understand the principles that drive detection in groups, we formulate a simple, and generally applicable, model that captures how visual detection properties emerge due to geometric scaling of the space occupied by the group and occlusion caused by neighbours. We employ these insights to discuss principles that extend beyond our specific system, such as how collective detection depends on individual body shape, and the size and structure of the group.


Author(s):  
Chen Cao ◽  
Jingni He ◽  
Lauren Mak ◽  
Deshan Perera ◽  
Devin Kwok ◽  
...  

Abstract DNA sequencing technologies provide unprecedented opportunities to analyze within-host evolution of microorganism populations. Often, within-host populations are analyzed via pooled sequencing of the population, which contains multiple individuals or “haplotypes.” However, current next-generation sequencing instruments, in conjunction with single-molecule barcoded linked-reads, cannot distinguish long haplotypes directly. Computational reconstruction of haplotypes from pooled sequencing has been attempted in virology, bacterial genomics, metagenomics, and human genetics, using algorithms based on either cross-host genetic sharing or within-host genomic reads. Here, we describe PoolHapX, a flexible computational approach that integrates information from both genetic sharing and genomic sequencing. We demonstrated that PoolHapX outperforms state-of-the-art tools tailored to specific organismal systems, and is robust to within-host evolution. Importantly, together with barcoded linked-reads, PoolHapX can infer whole-chromosome-scale haplotypes from 50 pools each containing 12 different haplotypes. By analyzing real data, we uncovered dynamic variations in the evolutionary processes of within-patient HIV populations previously unobserved in single position-based analysis.


2021 ◽  
Author(s):  
Thomas Stiehl ◽  
Anna Marciniak-Czochra

AbstractAcute myeloid leukemia is an aggressive cancer of the blood forming system. The malignant cell population is composed of multiple clones that evolve over time. Clonal data reflect the mechanisms governing treatment response and relapse. Single cell sequencing provides most direct insights into the clonal composition of the leukemic cells, however it is still not routinely available in clinical practice. In this work we develop a computational algorithm that allows identifying all clonal hierarchies that are compatible with bulk variant allele frequencies measured in a patient sample. The clonal hierarchies represent descendance relations between the different clones and reveal the order in which mutations have been acquired. The proposed computational approach is tested using single cell sequencing data that allow comparing the outcome of the algorithm with the true structure of the clonal hierarchy. We investigate which problems occur during reconstruction of clonal hierarchies from bulk sequencing data. Our results suggest that in many cases only a small number of possible hierarchies fits the bulk data. This implies that bulk sequencing data can be used to obtain insights in clonal evolution.


Sign in / Sign up

Export Citation Format

Share Document