Thermal imaging system using optimised wavefront coding operating in real-time

Author(s):  
Ian Hasler ◽  
Nicholas Bustin ◽  
David Price
2020 ◽  
Author(s):  
A. V. Arunraj ◽  
Chandan Parthasarathy ◽  
E. V. Neethu ◽  
S. Jishnu ◽  
Kartik Prakash

2021 ◽  
Author(s):  
Rohini Goel ◽  
Avinash Sharma ◽  
Rajiv Kapoor

An efficient driver assistance system is essential to avoid mishaps. The collision between the vehicles and objects before vehicle is the one of the principle reason of mishaps that outcomes in terms of diminished safety and higher monetary loss. Researchers are interminably attempting to upgrade the safety means for diminishing the mishap rates. This paper proposes an accurate and proficient technique for identifying objects in front of vehicles utilizing thermal imaging framework. For this purpose, image dataset is obtained with the help of a night vision IR camera. This strategy presents deep network based procedure for recognition of objects in thermal images. The deep network gives the model understanding of real world objects and empowers the object recognition. The real time thermal image database is utilized for the training and validation of deep network. In this work, Faster R-CNN is used to adequately identify objects in real time thermal images. This work can be an incredible help for driver assistance framework. The outcomes exhibits that the proposed work assists to boost public safety with good accuracy.


2005 ◽  
Vol 38 (1) ◽  
pp. 115-118 ◽  
Author(s):  
Klaus Gottschalk ◽  
Sabine Geyer ◽  
Hans-Jürgen Hellebrand

2015 ◽  
Vol 24 (4) ◽  
pp. 264-269
Author(s):  
Byung Mok Sung ◽  
Dong Geon Jung ◽  
Soon Jae Bang ◽  
Sun Min Baek ◽  
Seong Ho Kong

2021 ◽  
Vol 310 ◽  
pp. 01002
Author(s):  
Dmitriy Otkupman ◽  
Sergey Bezdidko ◽  
Victoria Ostashenkova

The efficiency of using Zernike moments when working with digital images obtained in the infrared region of the spectrum is considered to improve the accuracy and speed of an autonomous thermal imaging system. The theoretical justification of the choice of Zernike moments for solving computer (machine) vision problems and the choice of a suitable threshold binarization method is given. In order to verify the adequacy and expediency of using the chosen method, practical studies were conducted on the use of Zernike methods for distorting various thermal images in shades of gray.


2021 ◽  
Vol 36 (6) ◽  
pp. 886-895
Author(s):  
Hai-lin ZHONG ◽  
◽  
Yue-tao YANG ◽  
Xin WANG ◽  
Feng CAO ◽  
...  

2018 ◽  
pp. 1109-1132 ◽  
Author(s):  
Nilanjan Dey ◽  
Amira S. Ashour ◽  
Afnan S. Althoupety

Thermal imaging is a non-destructive, non-contact and rapid system. It reports temperature through measuring infrared radiation emanated by an object/ material surface. Automated thermal imaging system involves thermal camera equipped with infrared detectors, signal processing unit and image acquisition system supported by computer. It is elaborated in wide domains applications. Extensive focus is directed to the thermal imaging in the medical domain especially breast cancer detection. This chapter provided the main concept and the different applications of thermal imaging. It explores and analyses several works in the light of studding the thermograph. It is an effective screening tool for breast cancer prediction. Studies justify that thermography can be considered a complementary tool to detect breast diseases. The current chapter reviews many usages and limitations of thermography in biomedical field. Extensive recommendations for future directions are summarized to provide a structured vision of breast thermography.


Sign in / Sign up

Export Citation Format

Share Document