Thermal Imaging in Medical Science

2018 ◽  
pp. 1109-1132 ◽  
Author(s):  
Nilanjan Dey ◽  
Amira S. Ashour ◽  
Afnan S. Althoupety

Thermal imaging is a non-destructive, non-contact and rapid system. It reports temperature through measuring infrared radiation emanated by an object/ material surface. Automated thermal imaging system involves thermal camera equipped with infrared detectors, signal processing unit and image acquisition system supported by computer. It is elaborated in wide domains applications. Extensive focus is directed to the thermal imaging in the medical domain especially breast cancer detection. This chapter provided the main concept and the different applications of thermal imaging. It explores and analyses several works in the light of studding the thermograph. It is an effective screening tool for breast cancer prediction. Studies justify that thermography can be considered a complementary tool to detect breast diseases. The current chapter reviews many usages and limitations of thermography in biomedical field. Extensive recommendations for future directions are summarized to provide a structured vision of breast thermography.

Author(s):  
Nilanjan Dey ◽  
Amira S. Ashour ◽  
Afnan S. Althoupety

Thermal imaging is a non-destructive, non-contact and rapid system. It reports temperature through measuring infrared radiation emanated by an object/ material surface. Automated thermal imaging system involves thermal camera equipped with infrared detectors, signal processing unit and image acquisition system supported by computer. It is elaborated in wide domains applications. Extensive focus is directed to the thermal imaging in the medical domain especially breast cancer detection. This chapter provided the main concept and the different applications of thermal imaging. It explores and analyses several works in the light of studding the thermograph. It is an effective screening tool for breast cancer prediction. Studies justify that thermography can be considered a complementary tool to detect breast diseases. The current chapter reviews many usages and limitations of thermography in biomedical field. Extensive recommendations for future directions are summarized to provide a structured vision of breast thermography.


2020 ◽  
Vol 10 (5) ◽  
pp. 620-628 ◽  
Author(s):  
K. Arathy ◽  
Seema Ansari ◽  
K. A. Malini

Early detection and wide spread screening of breast cancer can reduce the mortality rate considerably. Affordable and easy to use screening device is essential for mass screening. In this paper, we demonstrate a simple, precise and easy tool for screening and early detection of breast cancer based on the higher temperature of abnormal tissues. We have made excellent reliability chip thermal sensor probes and developed 3D and 2D thermal imaging system that can predict the hot spot precisely by simple surface temperature measurements. The chip thermal sensor probes show less than 0.5% drift in resistance upon thermal and electrical aging. Various phantom experiments were conducted to demonstrate the use of chip thermistor probes for predicting the position of the heater location accurately. We have also found that the subtle changes in surface temperatures were accurately picked up by the thermistors. It is observed that simulated and experimental results were having best fit within root mean square error of 0.055.


2008 ◽  
Vol 196 (4) ◽  
pp. 523-526 ◽  
Author(s):  
Nimmi Arora ◽  
Diana Martins ◽  
Danielle Ruggerio ◽  
Eleni Tousimis ◽  
Alexander J. Swistel ◽  
...  

2005 ◽  
Vol 38 (1) ◽  
pp. 115-118 ◽  
Author(s):  
Klaus Gottschalk ◽  
Sabine Geyer ◽  
Hans-Jürgen Hellebrand

2015 ◽  
Vol 24 (4) ◽  
pp. 264-269
Author(s):  
Byung Mok Sung ◽  
Dong Geon Jung ◽  
Soon Jae Bang ◽  
Sun Min Baek ◽  
Seong Ho Kong

2021 ◽  
Vol 310 ◽  
pp. 01002
Author(s):  
Dmitriy Otkupman ◽  
Sergey Bezdidko ◽  
Victoria Ostashenkova

The efficiency of using Zernike moments when working with digital images obtained in the infrared region of the spectrum is considered to improve the accuracy and speed of an autonomous thermal imaging system. The theoretical justification of the choice of Zernike moments for solving computer (machine) vision problems and the choice of a suitable threshold binarization method is given. In order to verify the adequacy and expediency of using the chosen method, practical studies were conducted on the use of Zernike methods for distorting various thermal images in shades of gray.


2021 ◽  
Vol 36 (6) ◽  
pp. 886-895
Author(s):  
Hai-lin ZHONG ◽  
◽  
Yue-tao YANG ◽  
Xin WANG ◽  
Feng CAO ◽  
...  

2018 ◽  
Vol 38 (12) ◽  
pp. 1231001
Author(s):  
付秀华 Fu Xiuhua ◽  
刘文奇 Liu Wenqi ◽  
尹士平 Yin Shiping ◽  
刘克武 Liu Kewu ◽  
刘冬梅 Liu Dongmei

Sign in / Sign up

Export Citation Format

Share Document