scholarly journals Deep Learning Based Object Recognition in Real Time Images Using Thermal Imaging System

2021 ◽  
Author(s):  
Rohini Goel ◽  
Avinash Sharma ◽  
Rajiv Kapoor

An efficient driver assistance system is essential to avoid mishaps. The collision between the vehicles and objects before vehicle is the one of the principle reason of mishaps that outcomes in terms of diminished safety and higher monetary loss. Researchers are interminably attempting to upgrade the safety means for diminishing the mishap rates. This paper proposes an accurate and proficient technique for identifying objects in front of vehicles utilizing thermal imaging framework. For this purpose, image dataset is obtained with the help of a night vision IR camera. This strategy presents deep network based procedure for recognition of objects in thermal images. The deep network gives the model understanding of real world objects and empowers the object recognition. The real time thermal image database is utilized for the training and validation of deep network. In this work, Faster R-CNN is used to adequately identify objects in real time thermal images. This work can be an incredible help for driver assistance framework. The outcomes exhibits that the proposed work assists to boost public safety with good accuracy.

2020 ◽  
Author(s):  
A. V. Arunraj ◽  
Chandan Parthasarathy ◽  
E. V. Neethu ◽  
S. Jishnu ◽  
Kartik Prakash

2020 ◽  
Vol 17 (11) ◽  
pp. 5062-5071
Author(s):  
Rajiv Kapoor ◽  
Rohini Goel ◽  
Avinash Sharma

An intelligent railways safety system is very essential to avoid the accidents. The motivation behind the problem is the large number of collisions between trains and various obstacles, resulting in reduced safety and high costs. Continuous research is being carried out by distinct researchers to ensure railway safety and to reduce accident rates. In this paper, a novel method is proposed for identifying objects (obstacles) on the railway tracks in front of a moving train using a thermal camera. This approach presents a novel way of detecting the railway tracks as well as a deep network based method to recognize obstacles on the track. A pre-trained network is used that provides the model understanding of real world objects and enables deep learning classifiers for obstacle identification. The validation data is acquired by thermal imaging using night vision IR camera. In this work, the Faster R-CNN is used that efficiently recognize obstacles on the railway tracks. This process can be a great help for railways to reduce accidents and financial burdens. The result shows that the proposed method has good accuracy of approximately 83% which helps to enhance the railway safety.


2014 ◽  
Author(s):  
W.S. Lee ◽  
Victor Alchanatis ◽  
Asher Levi

Original objectives and revisions – The original overall objective was to develop, test and validate a prototype yield mapping system for unit area to increase yield and profit for tree crops. Specific objectives were: (1) to develop a yield mapping system for a static situation, using hyperspectral and thermal imaging independently, (2) to integrate hyperspectral and thermal imaging for improved yield estimation by combining thermal images with hyperspectral images to improve fruit detection, and (3) to expand the system to a mobile platform for a stop-measure- and-go situation. There were no major revisions in the overall objective, however, several revisions were made on the specific objectives. The revised specific objectives were: (1) to develop a yield mapping system for a static situation, using color and thermal imaging independently, (2) to integrate color and thermal imaging for improved yield estimation by combining thermal images with color images to improve fruit detection, and (3) to expand the system to an autonomous mobile platform for a continuous-measure situation. Background, major conclusions, solutions and achievements -- Yield mapping is considered as an initial step for applying precision agriculture technologies. Although many yield mapping systems have been developed for agronomic crops, it remains a difficult task for mapping yield of tree crops. In this project, an autonomous immature fruit yield mapping system was developed. The system could detect and count the number of fruit at early growth stages of citrus fruit so that farmers could apply site-specific management based on the maps. There were two sub-systems, a navigation system and an imaging system. Robot Operating System (ROS) was the backbone for developing the navigation system using an unmanned ground vehicle (UGV). An inertial measurement unit (IMU), wheel encoders and a GPS were integrated using an extended Kalman filter to provide reliable and accurate localization information. A LiDAR was added to support simultaneous localization and mapping (SLAM) algorithms. The color camera on a Microsoft Kinect was used to detect citrus trees and a new machine vision algorithm was developed to enable autonomous navigations in the citrus grove. A multimodal imaging system, which consisted of two color cameras and a thermal camera, was carried by the vehicle for video acquisitions. A novel image registration method was developed for combining color and thermal images and matching fruit in both images which achieved pixel-level accuracy. A new Color- Thermal Combined Probability (CTCP) algorithm was created to effectively fuse information from the color and thermal images to classify potential image regions into fruit and non-fruit classes. Algorithms were also developed to integrate image registration, information fusion and fruit classification and detection into a single step for real-time processing. The imaging system achieved a precision rate of 95.5% and a recall rate of 90.4% on immature green citrus fruit detection which was a great improvement compared to previous studies. Implications – The development of the immature green fruit yield mapping system will help farmers make early decisions for planning operations and marketing so high yield and profit can be achieved. 


2005 ◽  
Vol 38 (1) ◽  
pp. 115-118 ◽  
Author(s):  
Klaus Gottschalk ◽  
Sabine Geyer ◽  
Hans-Jürgen Hellebrand

2015 ◽  
Vol 24 (4) ◽  
pp. 264-269
Author(s):  
Byung Mok Sung ◽  
Dong Geon Jung ◽  
Soon Jae Bang ◽  
Sun Min Baek ◽  
Seong Ho Kong

2021 ◽  
Vol 310 ◽  
pp. 01002
Author(s):  
Dmitriy Otkupman ◽  
Sergey Bezdidko ◽  
Victoria Ostashenkova

The efficiency of using Zernike moments when working with digital images obtained in the infrared region of the spectrum is considered to improve the accuracy and speed of an autonomous thermal imaging system. The theoretical justification of the choice of Zernike moments for solving computer (machine) vision problems and the choice of a suitable threshold binarization method is given. In order to verify the adequacy and expediency of using the chosen method, practical studies were conducted on the use of Zernike methods for distorting various thermal images in shades of gray.


Sign in / Sign up

Export Citation Format

Share Document