Periodic array of nanoholes on gold-coated optical fiber end-faces for surface plasmon resonance liquid refractive index sensing

2012 ◽  
Author(s):  
Huy Nguyen ◽  
Fotios Sidiroglou ◽  
Stephen F. Collins ◽  
Gregory W. Baxter ◽  
Ann Roberts ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6164
Author(s):  
Treesukon Treebupachatsakul ◽  
Siratchakrit Shinnakerdchoke ◽  
Suejit Pechprasarn

This paper provides a theoretical framework to analyze and quantify roughness effects on sensing performance parameters of surface plasmon resonance measurements. Rigorous coupled-wave analysis and the Monte Carlo method were applied to compute plasmonic reflectance spectra for different surface roughness profiles. The rough surfaces were generated using the low pass frequency filtering method. Different coating and surface treatments and their reported root-mean-square roughness in the literature were extracted and investigated in this study to calculate the refractive index sensing performance parameters, including sensitivity, full width at half maximum, plasmonic dip intensity, plasmonic dip position, and figure of merit. Here, we propose a figure-of-merit equation considering optical intensity contrast and signal-to-noise ratio. The proposed figure-of-merit equation could predict a similar refractive index sensing performance compared to experimental results reported in the literature. The surface roughness height strongly affected all the performance parameters, resulting in a degraded figure of merit for surface plasmon resonance measurement.


2018 ◽  
Vol 8 (7) ◽  
pp. 1172 ◽  
Author(s):  
Nunzio Cennamo ◽  
Luigi Zeni ◽  
Ester Catalano ◽  
Francesco Arcadio ◽  
Aldo Minardo

In this paper, we show that light-diffusing fibers (LDF) can be efficiently used as host material for surface plasmon resonance (SPR)-based refractive index sensing. This novel platform does not require a chemical procedure to remove the cladding or enhance the evanescent field, which is expected to give better reproducibility of the sensing interface. The SPR sensor has been realized by first removing the cladding with a simple mechanical stripper, and then covering the unclad fiber surface with a thin gold film. The tests have been carried out using water–glycerin mixtures with refractive indices ranging from 1.332 to 1.394. The experimental results reveal a high sensitivity of the SPR wavelength to the outer medium’s refractive index, with values ranging from ~1500 to ~4000 nm/RIU in the analyzed range. The results suggest that the proposed optical fiber sensor platform could be used in biochemical applications.


Sign in / Sign up

Export Citation Format

Share Document