Properties of magnetorheological fluid with stable processing

2012 ◽  
Author(s):  
Long Tang ◽  
En Yue ◽  
Shun-An Luo ◽  
Ping Zhang ◽  
Guang-ming Zhao ◽  
...  
Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 132
Author(s):  
Jon Gutiérrez ◽  
Virginia Vadillo ◽  
Ainara Gómez ◽  
Joanes Berasategi ◽  
Maite Insausti ◽  
...  

Recently, our collaborative work in the fabrication of a magnetorheological fluid (MRF) containing high magnetization FeCo nanoparticles (NPs, fabricated in our laboratories using the chemical reduction technique; MS = 212 Am2/kg) as magnetic fillers have resulted in a new MRF with superior performance up to 616.7 kA/m. The MRF had a yield stress value of 2729 Pa and good reversibility after a demagnetization process. This value competes with the best ones reported in the most recent literature. Nevertheless, the fabrication process of this type of fluid is not an easy task since there is a strong trend to the aggregation of the FeCo NPs due to the strong magnetic dipolar interaction among them. Thus, now we present the analysis of some aspects concerning the fabrication process of our FeCo NPs containing MRF, mainly the type of surfactant used to cover those NPs (oleic acid or aluminium stearate) and its concentration, and the procedure followed (mechanical and/or ultrasound stirring) to achieve a good dispersion of those magnetic fillers within the fluid.


2015 ◽  
Vol 24 (8) ◽  
pp. 085021 ◽  
Author(s):  
Shuaishuai Sun ◽  
Jian Yang ◽  
Weihua Li ◽  
Huaxia Deng ◽  
Haiping Du ◽  
...  

Author(s):  
Y K Ahn ◽  
J-Y Ha ◽  
Y-H Kim ◽  
B-S Yang ◽  
M Ahmadian ◽  
...  

This paper presents an analytical and experimental analysis of the characteristics of a squeeze-type magnetorheological (MR) mount which can be used for various vibration isolation areas. The concept of the squeeze-type mount and details of the design of a squeeze-type MR mount are discussed. These are followed by a detailed description of the test set-up for evaluating the dynamic behaviour of the mount. A series of tests was conducted on the prototype mount built for this study, in order to characterize the changes occurring as a result of changing electrical current to the mount. The results of this study show that increasing electrical current to the mount, which increases the yield stress of the MR fluid, will result in an increase in both stiffness and damping of the mount. The results also show that the mount hysteresis increases with increase in current to the MR fluid, causing changes in stiffness and damping at different input frequencies.


2007 ◽  
Vol 443 (1-2) ◽  
pp. 16-24 ◽  
Author(s):  
John C. Ulicny ◽  
Michael P. Balogh ◽  
Noel M. Potter ◽  
Richard A. Waldo

Sign in / Sign up

Export Citation Format

Share Document