Classification of shallow-water acoustic signals via alpha-Stable modeling of the one-dimensional wavelet coefficients

2006 ◽  
Vol 119 (3) ◽  
pp. 1396-1405 ◽  
Author(s):  
Michael I. Taroudakis ◽  
George Tzagkarakis ◽  
Panagiotis Tsakalides
1999 ◽  
Vol 396 ◽  
pp. 223-256 ◽  
Author(s):  
B. S. BROOK ◽  
S. A. E. G. FALLE ◽  
T. J. PEDLEY

Unsteady flow in collapsible tubes has been widely studied for a number of different physiological applications; the principal motivation for the work of this paper is the study of blood flow in the jugular vein of an upright, long-necked subject (a giraffe). The one-dimensional equations governing gravity- or pressure-driven flow in collapsible tubes have been solved in the past using finite-difference (MacCormack) methods. Such schemes, however, produce numerical artifacts near discontinuities such as elastic jumps. This paper describes a numerical scheme developed to solve the one-dimensional equations using a more accurate upwind finite volume (Godunov) scheme that has been used successfully in gas dynamics and shallow water wave problems. The adapatation of the Godunov method to the present application is non-trivial due to the highly nonlinear nature of the pressure–area relation for collapsible tubes.The code is tested by comparing both unsteady and converged solutions with analytical solutions where available. Further tests include comparison with solutions obtained from MacCormack methods which illustrate the accuracy of the present method.Finally the possibility of roll waves occurring in collapsible tubes is also considered, both as a test case for the scheme and as an interesting phenomenon in its own right, arising out of the similarity of the collapsible tube equations to those governing shallow water flow.


2007 ◽  
Vol 33 (6) ◽  
pp. 551-560 ◽  
Author(s):  
Bhaskar C Sahoo ◽  
Thomas Oommen ◽  
Debasmita Misra ◽  
Gregory Newby

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Szu-Hsien Peng

The purpose of this study is to model the flow movement in an idealized dam-break configuration. One-dimensional and two-dimensional motion of a shallow flow over a rigid inclined bed is considered. The resulting shallow water equations are solved by finite volumes using the Roe and HLL schemes. At first, the one-dimensional model is considered in the development process. With conservative finite volume method, splitting is applied to manage the combination of hyperbolic term and source term of the shallow water equation and then to promote 1D to 2D. The simulations are validated by the comparison with flume experiments. Unsteady dam-break flow movement is found to be reasonably well captured by the model. The proposed concept could be further developed to the numerical calculation of non-Newtonian fluid or multilayers fluid flow.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fabián Sepúlveda-Soto ◽  
Diego Guzmán-Silva ◽  
Edgardo Rosas ◽  
Rodrigo A. Vicencio ◽  
Claudio Falcón

Abstract We report on the observation and characterization of broad-band waveguiding of surface gravity waves in an open channel, in the shallow water limit. The waveguide is constructed by changing locally the depth of the fluid layer, which creates conditions for surface waves to propagate along the generated guide. We present experimental and numerical results of this shallow water waveguiding, which can be straightforwardly matched to the one-dimensional water wave equation of shallow water waves. Our work revitalizes water waveguiding research as a relevant and controllable experimental setup to study complex phenomena using waveguide geometries.


2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Marius de Leeuw ◽  
Chiara Paletta ◽  
Anton Pribytok ◽  
Ana L. Retore ◽  
Paul Ryan

In this paper we continue our classification of regular solutions of the Yang-Baxter equation using the method based on the spin chain boost operator developed in [1]. We provide details on how to find all non-difference form solutions and apply our method to spin chains with local Hilbert space of dimensions two, three and four. We classify all 16\times1616×16 solutions which exhibit \mathfrak{su}(2)\oplus \mathfrak{su}(2)𝔰𝔲(2)⊕𝔰𝔲(2) symmetry, which include the one-dimensional Hubbard model and the SS-matrix of the {AdS}_5 \times {S}^5AdS5×S5 superstring sigma model. In all cases we find interesting novel solutions of the Yang-Baxter equation.


Author(s):  
В.М. Головизнин ◽  
Д.Ю. Горбачев ◽  
А.М. Колокольников ◽  
П.А. Майоров ◽  
П.А. Майоров ◽  
...  

Предложена новая неявная безусловно устойчивая схема для одномерных уравнений мелкой воды, сохраняющая все особенности явной схемы Кабаре. Проведен анализ диссипативных и дисперсионных свойств новой схемы и предложен алгоритм ее численного решения. Приведены примеры решения задачи о распаде разрыва. A new implicit unconditionally stable scheme for the one-dimensional shallow water equations is proposed. This implicit scheme retains all the features of the explicit CABARET (Compact Accurately Boundary Adjusting-REsolution Technique) difference scheme. Dissipative and dispersion properties of this new scheme are analyzed; an algorithm of its numerical solution is discussed. Some examples of solving the Riemann problem are considered.


Sign in / Sign up

Export Citation Format

Share Document