A user friendly, cost‐effective and portable tool for locating multiple arbitrary sound sources in three‐dimensional space in real time.

2010 ◽  
Vol 127 (3) ◽  
pp. 1772-1772
Author(s):  
Na Zhu ◽  
Sean F. Wu
2014 ◽  
Author(s):  
Assaf Levanon ◽  
Yitzhak Yitzhaky ◽  
Natan S. Kopeika ◽  
Daniel Rozban ◽  
Amir Abramovich

2019 ◽  
Author(s):  
Raimo Hartmann ◽  
Hannah Jeckel ◽  
Eric Jelli ◽  
Praveen K. Singh ◽  
Sanika Vaidya ◽  
...  

AbstractBiofilms are now considered to be the most abundant form of microbial life on Earth, playing critical roles in biogeochemical cycles, agriculture, and health care. Phenotypic and genotypic variations in biofilms generally occur in three-dimensional space and time, and biofilms are therefore often investigated using microscopy. However, the quantitative analysis of microscopy images presents a key obstacle in phenotyping biofilm communities and single-cell heterogeneity inside biofilms. Here, we present BiofilmQ, a comprehensive image cytometry software tool for the automated high-throughput quantification and visualization of 3D and 2D community properties in space and time. Using BiofilmQ does not require prior knowledge of programming or image processing and provides a user-friendly graphical user interface, resulting in editable publication-quality figures. BiofilmQ is designed for handling fluorescence images of any spatially structured microbial community and growth geometry, including microscopic, mesoscopic, macroscopic colonies and aggregates, as well as bacterial biofilms in the context of eukaryotic hosts.


2020 ◽  
Author(s):  
Hannah Jeckel ◽  
Raimo Hartmann ◽  
Eric Jelli ◽  
Knut Drescher ◽  

<p>Biofilms are now considered to be the most abundant form of microbial life on Earth, playing critical roles in biogeochemical cycles, agriculture, and health care. Phenotypic and genotypic variations in biofilms generally occur in three-dimensional space and time, and biofilms are therefore often investigated using microscopy. However, the quantitative analysis of microscopy images presents a key obstacle in phenotyping biofilm communities and single-cell heterogeneity inside biofilms. Here, we present BiofilmQ, a comprehensive image cytometry software tool for the automated high-throughput quantification and visualization of 3D and 2D community properties in space and time. Using BiofilmQ does not require prior knowledge of programming or image processing and provides a user-friendly graphical user interface, resulting in editable publication-quality figures. BiofilmQ is designed for handling fluorescence images of any spatially structured microbial community and growth geometry, including microscopic, mesoscopic, macroscopic colonies and aggregates, as well as bacterial biofilms in the context of eukaryotic hosts.</p>


2012 ◽  
Vol 20 (01) ◽  
pp. 1250007 ◽  
Author(s):  
NA ZHU ◽  
SEAN F. WU

Triangulation is commonly used for source localization and most triangulation applications are based on intersection of the bearing direction to locate a source on a two-dimensional plane. In this paper, two new mathematical models (a basic model and an improved one) that expands the traditional triangulation concept to three-dimensional space are developed to locate multiple incoherent sound sources. The basic model uses four microphones and concentrates on solving a set of three quadratic equations simultaneously. The improved model requires more than four microphones and uses the solution from the basic model, as well as analyzing the intersection of bearing angles. Redundancy checks on the time differences of arrival are added to further reduce the source localization error in the improved model. Moreover, the input data are pre-processed and de-noised through filtering and windowing to enhance the effective signal to noise ratio. Various sound sources are tested, including transient, impulsive, continuous, broad-band, and narrow-band sounds. Numerical simulations and experimental validation using the real world sound sources are conducted. The impacts of the source direction/source detection range on the accuracy of source localization results are examined and discussed.


Sign in / Sign up

Export Citation Format

Share Document