Attenuation of low‐frequency underwater sound using bubble resonance phenomena and acoustic impedance mismatching.

2010 ◽  
Vol 128 (4) ◽  
pp. 2279-2279
Author(s):  
Kevin M. Lee ◽  
Kevin T. Hinojosa ◽  
Mark S. Wochner ◽  
Theodore F. Argo ◽  
Preston S. Wilson ◽  
...  
2011 ◽  
Author(s):  
Kevin Lee ◽  
Kevin T. Hinojosa ◽  
Mark S. Wochner ◽  
Theodore F. Argo IV ◽  
Preston S. Wilson ◽  
...  

1994 ◽  
Author(s):  
Peter H. Rogers ◽  
Gary W. Caille ◽  
Thomas N. Lewis

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3674 ◽  
Author(s):  
Wei Lu ◽  
Yu Lan ◽  
Rongzhen Guo ◽  
Qicheng Zhang ◽  
Shichang Li ◽  
...  

A spiral sound wave transducer comprised of longitudinal vibrating elements has been proposed. This transducer was made from eight uniform radial distributed longitudinal vibrating elements, which could effectively generate low frequency underwater acoustic spiral waves. We discuss the production theory of spiral sound waves, which could be synthesized by two orthogonal acoustic dipoles with a phase difference of 90 degrees. The excitation voltage distribution of the transducer for emitting a spiral sound wave and the measurement method for the transducer is given. Three-dimensional finite element modeling (FEM)of the transducer was established for simulating the vibration modes and the acoustic characteristics of the transducers. Further, we fabricated a spiral sound wave transducer based on our design and simulations. It was found that the resonance frequency of the transducer was 10.8 kHz and that the transmitting voltage resonance was 140.5 dB. The underwater sound field measurements demonstrate that our designed transducer based on the longitudinal elements could successfully generate spiral sound waves.


2015 ◽  
Author(s):  
Kevin M. Lee ◽  
Andrew R. McNeese ◽  
Preston S. Wilson ◽  
Mark S. Wochner

2011 ◽  
Vol 129 (4) ◽  
pp. 2462-2462 ◽  
Author(s):  
Kevin M. Lee ◽  
Kevin T. Hinojosa ◽  
Mark S. Wochner ◽  
Theodore F. Argo ◽  
Preston S. Wilson

2018 ◽  
Vol 6 (4) ◽  
pp. T1023-T1043 ◽  
Author(s):  
Osareni C. Ogiesoba ◽  
William A. Ambrose ◽  
Robert G. Loucks

Although Serbin field in Southeast Texas was discovered in 1987, lithologic and petrophysical properties in the southeastern part of the field have not been fully evaluated. We have generated instantaneous frequency from 3D seismic data and predicted gamma-ray response volume from seismic attributes. By extracting maps of the instantaneous frequency and gamma-ray response along interpreted horizons, and crossplotting the instantaneous frequency against gamma-ray logs and integrating core data, we generated lithology maps to identify shale-prone zones that stratigraphically trapped hydrocarbons in the southeastern part of the field. We determine that Serbin field is separated into two areas: (1) a high-frequency, high-gamma-ray, and high-acoustic-impedance area in the northwest and (2) a low-frequency, low-gamma-ray, and low-acoustic-impedance area located in the southeast. By developing a lithologic map and relating it to the corresponding instantaneous-frequency map and log data, we also find that the southeastern part of the field can be divided into three zones: (1) zone 1, composed of approximately 0.7–2.7 m (approximately 2–8 ft) thick sandstone-rich beds of moderate frequency (25–30 Hz); (2) zone 2, composed of high-frequency (33–60 Hz) shale-rich zones that serve as stratigraphic-trapping-mechanisms; and (3) zone 3, composed of approximately 1.7–4 m (approximately 5–13 ft) thick sandstone-rich beds of low frequency (0–18 Hz) and relatively high porosity. These methods can be applied in other areas of the field with limited well control.


Sign in / Sign up

Export Citation Format

Share Document