Application of instantaneous-frequency attribute and gamma-ray wireline logs in the delineation of lithology in Serbin field, Southeast Texas: A case study

2018 ◽  
Vol 6 (4) ◽  
pp. T1023-T1043 ◽  
Author(s):  
Osareni C. Ogiesoba ◽  
William A. Ambrose ◽  
Robert G. Loucks

Although Serbin field in Southeast Texas was discovered in 1987, lithologic and petrophysical properties in the southeastern part of the field have not been fully evaluated. We have generated instantaneous frequency from 3D seismic data and predicted gamma-ray response volume from seismic attributes. By extracting maps of the instantaneous frequency and gamma-ray response along interpreted horizons, and crossplotting the instantaneous frequency against gamma-ray logs and integrating core data, we generated lithology maps to identify shale-prone zones that stratigraphically trapped hydrocarbons in the southeastern part of the field. We determine that Serbin field is separated into two areas: (1) a high-frequency, high-gamma-ray, and high-acoustic-impedance area in the northwest and (2) a low-frequency, low-gamma-ray, and low-acoustic-impedance area located in the southeast. By developing a lithologic map and relating it to the corresponding instantaneous-frequency map and log data, we also find that the southeastern part of the field can be divided into three zones: (1) zone 1, composed of approximately 0.7–2.7 m (approximately 2–8 ft) thick sandstone-rich beds of moderate frequency (25–30 Hz); (2) zone 2, composed of high-frequency (33–60 Hz) shale-rich zones that serve as stratigraphic-trapping-mechanisms; and (3) zone 3, composed of approximately 1.7–4 m (approximately 5–13 ft) thick sandstone-rich beds of low frequency (0–18 Hz) and relatively high porosity. These methods can be applied in other areas of the field with limited well control.

2013 ◽  
Vol 9 (S304) ◽  
pp. 205-208
Author(s):  
Elizabeth K. Mahony

AbstractUntil recently, the radio sky above 5 GHz was relatively unexplored. This has changed with the completion of the Australia Telescope 20 GHz survey (AT20G; Murphy et al., 2010); a blind survey of the southern sky down to a limiting flux density of 40 mJy. The AT20G survey provides by far the largest and most complete sample of high-frequency radio sources yet obtained, offering new insights into the nature of the high-frequency active galaxy population. Whilst the radio data provides a unique sample of objects, these data alone are insufficient to completely constrain models of radio source properties and the evolution of radio galaxies. Complementary multiwavelength data is vital in understanding the physical properties of the central black hole.In this talk I will provide a brief overview of the AT20G survey, followed by a discussion of the multiwavelength properties of the high-frequency source population. In particular, I will focus on the optical properties of AT20G sources, which are very different to those of a low-frequency selected sample, along with the gamma-ray properties where we find a correlation between high-frequency radio flux density and gamma-ray flux density. By studying the multiwavelength properties of a large sample of high-frequency radio sources we gain a unique perspective on the inner dynamics of some of the most active AGN.


2014 ◽  
Vol 2 (3) ◽  
pp. T143-T153 ◽  
Author(s):  
Tatiane M. Nascimento ◽  
Paulo T. L. Menezes ◽  
Igor L. Braga

Seismic inversion is routinely used to determine rock properties, such as acoustic impedance and porosity, from seismic data. Nonuniqueness of the solutions is a major issue. A good strategy to reduce this inherent ambiguity of the inversion procedure is to introduce stratigraphic and structural information a priori to better construct the low-frequency background model. This is particularly relevant when studying heterogeneous deepwater turbidite reservoirs that form prolific, but complex, hydrocarbon plays in the Brazilian offshore basins. We evaluated a high-resolution inversion workflow applied to 3D seismic data at Marlim Field, Campos Basin, to recover acoustic impedance and porosity of the turbidites reservoirs. The Marlim sandstones consist of an Oligocene/Miocene deepwater turbidite system forming a series of amalgamated bodies. The main advantage of our workflow is to incorporate the interpreter’s knowledge about the local stratigraphy to construct an enhanced background model, and then extract a higher resolution image from the seismic data. High-porosity zones were associated to the reservoirs facies; meanwhile, the nonreservoir facies were identified as low-porosity zones.


2020 ◽  
Vol 4 (2) ◽  
pp. 3-14
Author(s):  
Muhammad Niko Febridon ◽  
Bagus Sapto Mulyatno ◽  
Egie Wijaksono

Analysis of the physical properties of the sandstone reservoir in this study was carried out using the acoustic impedance inversion method and seismic multi-attribute which was carried out at the Bonaparte Basin "MNF" Field. In this study, the acoustic impedance distribution is generated, and the acoustic impedance is derived to obtain a water saturation distribution map and the volume of the log property is predicted to predict pseudo gamma ray, density and porosity with multi-attribute analysis using linear regression method with step wise regression technique. From the results of well data crossplot analysis for sand-shale sensitivity analysis and inversion analysis on sandstones filled with hydrocarbon fluid obtained the acoustic impedance value is between 12,000 ft / s * g / cc - 27,000 ft / s*g / cc. In the Middle part around the NN-1, NN-3 and NN4 wells and the Southeastern part of the research area are prospect areas that have gamma ray values with a range of 5-70 API, density with a range of 2.1-2.3 gr / cc and porosity with a range of 18-23% and SW of 10-13% indicating that the hydrocarbon gas accumulated in the research field. The results of the multi-attributes and acoustic impedance show that the sandstones in this field are thight sandstones.


2021 ◽  
Vol 12 ◽  
Author(s):  
Simon Khuvis ◽  
Sean T. Hwang ◽  
Ashesh D. Mehta

Objective: It has been asserted that high-frequency analysis of intracranial EEG (iEEG) data may yield information useful in localizing epileptogenic foci.Methods: We tested whether proposed biomarkers could predict lateralization based on iEEG data collected prior to corpus callosotomy (CC) in three patients with bisynchronous epilepsy, whose seizures lateralized definitively post-CC. Lateralization data derived from algorithmically-computed ictal phase-locked high gamma (PLHG), high gamma amplitude (HGA), and low-frequency (filtered) line length (LFLL), as well as interictal high-frequency oscillation (HFO) and interictal epileptiform discharge (IED) rate metrics were compared against ground-truth lateralization from post-CC ictal iEEG.Results: Pre-CC unilateral IEDs were more frequent on the more-pathologic side in all subjects. HFO rate predicted lateralization in one subject, but was sensitive to detection threshold. On pre-CC data, no ictal metric showed better predictive power than any other. All post-corpus callosotomy seizures lateralized to the pathological hemisphere using PLHG, HGA, and LFLL metrics.Conclusions: While quantitative metrics of IED rate and ictal HGA, PHLG, and LFLL all accurately lateralize based on post-CC iEEG, only IED rate consistently did so based on pre-CC data.Significance: Quantitative analysis of IEDs may be useful in lateralizing seizure pathology. More work is needed to develop reliable techniques for high-frequency iEEG analysis.


2018 ◽  
Author(s):  
Juan L.P. Soto ◽  
Felipe V.D. Prado ◽  
Etienne Combrisson ◽  
Karim Jerbi

AbstractMany functional connectivity studies based on electrophysiological measurements, such as electro- and magnetoencephalography (EEG/MEG), start their investigations by extracting a narrowband representation of brain activity time series, and then computing their envelope amplitudes and instantaneous phases, which serve as inputs to subsequent data processing. The two most popular approaches for obtaining these narrowband amplitudes and phases are: bandpass filtering followed by Hilbert transform (we call this the Hilbert approach); and convolution with wavelet kernels (the wavelet approach). In this work, we investigate how these two approaches perform in detecting the phenomenon of phase-amplitude coupling (PAC), whereby the amplitude of a high-frequency signal is driven by the phase of a low-frequency signal. The comparison of both approaches is carried out by means of simulated brain activity, from which we run receiver operating characteristic (ROC) analyses, and of experimental MEG data from a visuomotor coordination study. The ROC analyses show that both approaches have comparable accuracy, except in the presence of interfering signals with frequencies near the high-frequency band. As for the visuomotor data, the most noticeable impact of the choice of approach was observed when evaluating task-based changes in PAC between the delta (2-5 Hz) and the high-gamma (60-90 Hz) frequency bands, as we were able to identify widespread brain areas with statistically significant effects only with the Hilbert approach. These results provide preliminary evidence of the advantages of the Hilbert approach over the wavelet approach, at least in the context of PAC estimates.


2020 ◽  
Vol 12 (1) ◽  
pp. 1158-1168
Author(s):  
Chris Adesola Samakinde ◽  
Jan Marinus van Bever Donker ◽  
Oluwaseun Adejuwon Fadipe

AbstractThe reported occurrence of Albian- and Cenomanian-aged braided fluvio-deltaic channels in the Orange Basin, South Africa, opens a window of exploration activities to characterize these channels as they are renowned to form some of the world’s giant oil field. In this study, a seismic acoustic impedance inversion and seismic attributes (instantaneous frequency and iso-frequency) analysis is used to investigate potential Albian and Cenomanian fluvio-deltaic channels in offshore, northern Orange Basin. Reservoirs were mapped using a well and 3D seismic volume (8-bit) after initial dip-steering coherency filtering had been performed on the seismic volume to remove incoherent noise and improve data resolution. Model-based acoustic impedance inversion was applied on the seismic volume to delineate fluvio-deltaic channels in addition to using the RMS (root mean square) amplitude attribute. Iso-frequency using the cosine correlative transform (CCT) method was equally applied to delineate these channels. Instantaneous frequency attribute was analyzed for potential hydrocarbon-charged sediments. This was achieved by utilizing thirty-three seismic traces as an input in the Hilbert transform window, after which trace envelope and instantaneous phase were transformed into instantaneous frequency. Acoustic impedance inversion results reveal the presence of two channels within the Cenomanian sequence, which shows high porosity (∼40%) along its geometry. The CCT method shows that the 8 Hz frequency window resolved the presence of a channel within the Albian sequence. A meandering channel within the Albian sequence was equally delineated by the RMS, while the application of instantaneous frequency (IF) attribute indicates the presence of hydrocarbon-charged sediments of Cenomanian age in proximity to a listric normal fault because of the attenuation of frequency observed close to the fault. This study demonstrates a case study of the application of seismic impedance inversion and seismic attributes for the delineation of potential reservoirs and hydrocarbon-charged sediments in a basin.


2019 ◽  
Vol 490 (4) ◽  
pp. 5798-5806 ◽  
Author(s):  
D d’Antonio ◽  
M Giroletti ◽  
G Giovannini ◽  
A Maini

ABSTRACT Low-frequency radio surveys allow in-depth studies and new analyses of classes of sources that were previously known and characterized only in other bands. In recent years, low radio frequency observations of blazars have become available as a result of new surveys, such as the GaLactic and Extragalactic All-sky Murchison Widefield Array (MWA) survey (GLEAM). We search for gamma-ray blazars in a low-frequency (ν < 240 MHz) survey, to characterize the spectral properties of the spatial components. We cross-correlate GLEAM with the fourth catalogue of active galactic nuclei (4LAC) detected by the Fermi satellite. This improves on previous works by using a low-frequency catalogue that is wider and deeper, with a better spectral coverage and the latest and most sensitive gamma-ray source list. Compared with a previous study based on the commissioning survey, the detection rate increased from 35 to 70 per cent. We include data from the Australia Telescope 20-GHz (AT20G) survey in order to extract high-frequency high-angular resolution information about the radio cores of blazars. We find low radio frequency counterparts for 1274 out of 1827 blazars in the range of 72–231 MHz. Blazars have flat spectra at the ∼100-MHz regime, with a mean spectral index α = −0.44 ± 0.01 (assuming Sν ∝ να). Low synchrotron peaked objects have a flatter spectrum than high synchrotron peaked objects. Low frequency radio and gamma-ray emissions show a significant but scattered correlation. The ratio between lobe and core radio emission in gamma-ray blazars is smaller than previously estimated.


Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. V47-V57 ◽  
Author(s):  
Yandong Li ◽  
Xiaodong Zheng ◽  
Yan Zhang

Low-frequency shadows have often been used as hydrocarbon indicators in the application of spectral decomposition. The reason behind the low-frequency anomaly has been explained as high-frequency energy attenuation caused by hydrocarbons. However, in our practice on carbonate reservoir characterization in two areas, Precaspian Basin and Central Tarim Basin, China, we encountered high-frequency anomalies, i.e., the isofrequency slices or sections at high frequencies exhibit anomalies associated with the good carbonate reservoir, particularly in the tight limestone background. We used the product of porosity and thickness as a parameter to measure the quality of the carbonate reservoir of each well and classified the 46 wells in our two studied areas into three types. Type I wells contain high-porosity thick reservoirs, type II wells contain reservoirs with moderate porosity and thickness, and type III wells contain only low-porosity thin reservoirs. The results were that 12 out of 13 type I wells exhibit high-frequency anomalies, and 30 out of 33 type II and type III wells do not exhibit high-frequency anomalies. We further validated the existence of this high-frequency anomaly by forward modeling analysis and fluid substitution experiments using the actual well-log curves measured in the carbonate reservoir. The results showed that in our two studied areas the high-frequency anomalies are more common than low-frequency shadows that can be observed only when the thickness of the reservoir is more than half of the wavelength or the reservoir rocks are extremely unconsolidated. Therefore, this high-frequency anomaly may be used as a more reliable indicator for a good carbonate reservoir than low-frequency shadows in real applications.


2021 ◽  
Author(s):  
Hadi Choubdar ◽  
Mahdi Mahdavi ◽  
Zahra Rostami ◽  
Erfan Zabeh ◽  
Martin J Gillies ◽  
...  

Neural oscillatory activities in basal ganglia have prominent roles in cognitive processes on local and global scales. However, the characteristics of high frequency oscillatory activities during cognitive tasks have not been extensively explored in human Globus Pallidus internus (GPi). This study aimed to investigate amplitude and interhemispheric coupling of bilateral GPi high gamma bursts in dystonia and Parkinson's Disease (PD) patients, in on and off medication states, after feedback during the Intra-Extra-Dimension shift (IED) task. Bilateral GPi Local Field Potentials (LFP) activity was recorded via externalized DBS electrodes during the IED task. Inter hemisphere phase synchrony was assessed using Inter-Site Phase Clustering (ISPC). Transient high gamma activity (~100-150Hz) was observed immediately after feedback in the dystonia patient. Moreover, these bursts were phase synchronous between left and right GPis with an antiphase clustering of phase differences. In contrast, no synchronous high gamma activity was detected in the PD patient with or without dopamine administration. The off-med PD patient displayed enhanced low frequency clusters ameliorated by medication in the on-med state. Furthermore, an increased low frequency activity was observed after feedback of incorrect trials in both disease states. The current study provides a rare report of antiphase homotopic synchrony in human GPi, potentially related to incorporating and processing feedback information. The absence of these activities in off and on-med PD indicates the potential presence of impaired medication independent circuits related to feedback processing. Together, these findings are helpful in pointing to the potential role of GPi's synchronized high frequency activity in cognitive tasks and feedback information processing.


2021 ◽  
Vol 54 (2D) ◽  
pp. 39-58
Author(s):  
Hiba Tareq

The lithology of four formations from the Cretaceous period (Mishrif, Rumaila, Ahmadi, and Mauddud) was evaluated using the Acoustic Impedance and Vp/Vs ratio cross plot from Rock Physics Templates. Dipole sonic logs in Am-6-Am-10 well log were used to calculate compression velocity then the estimated shear velocity using Greenberg Castagna equations. RHOB and VP logs were used to calculate Acoustic Impedance. The ratio of Vp/Vs was measured then used with Acoustic Impedance colored by shale volume which is measured from gamma ray log, porosity and water saturation to estimate lithology type of the considered formations using cross plots and rock physics chart in the Techlog software. The lithology of the formations found to be of high porosity limestone alternating with hard limestone layers and the shale volume increases in the Ahmadi formation. The water bearing zone was found in all Formations, this zone is indicted by high Vp/ Vs ratio and low AI. The hydrocarbon bearing zones were indicated by low amount of both Acoustic Impedance and Vp/Vs ratio and this observation was shown in Mishrif and Mauddud formations.


Sign in / Sign up

Export Citation Format

Share Document